No Arabic abstract
We present a comparison of the spatial distributions of Ly$alpha$ emitters (LAEs) and massive star-forming and quiescent galaxies (SFGs and QGs) at $2<z<4.5$. We use the photometric redshift catalog to select SFGs and QGs and a LAE catalog from intermediate/narrow bands obtained from the Subaru Telescope and Isaac-Newton Telescope in Cosmic Evolution Survey (COSMOS). We derive the auto-/cross- correlation signals of SFGs, QGs, and LAEs, and the galaxy overdensity distributions at the position of them. Whereas the cross-correlation signals of SFGs and QGs are explained solely by their halo mass differences, those of SFGs and LAEs are significantly lower than those expected from their auto-correlation signals, suggesting that some additional physical processes are segregating these two populations. Such segregation of SFGs and LAEs becomes stronger for rest-frame ultraviolet faint LAEs ($M_{rm UV}>-20$). From the overdensity distributions, LAEs are located in less dense regions than SFGs and QGs, whereas SFGs and QGs tend to be in the same overdensity distributions. The different spatial distributions of LAEs compared to those of massive galaxies may be attributed to assembly bias or large amounts of neutral hydrogen gas associated with massive halos. These results reinforce the importance of exploring multiple galaxy populations in quantifying the intrinsic galaxy environment of the high-$z$ universe.
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiation from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
In this series of lectures, I review our observational understanding of high-$z$ Ly$alpha$ emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at $zsim 0$ to $zsim 10$. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-$z$ galaxies, high-$z$ analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Ly$alpha$ sources extended over $sim 10-100$ kpc, dubbed Ly$alpha$ blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Ly$alpha$ damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.
(abridged) Observing the signature of accretion from the intergalactic medium (IGM) onto galaxies at z~3 requires the detection of faint (L<<L*) galaxies embedded in a filamentary matrix of low-density, metal-poor gas coherent over hundreds of kpc. We study the gaseous environment of three Lyman$alpha$ emitters (LAEs) at z=2.7-2.8, found to be aligned in projection with a background QSO over ~250 kpc along the slit of a long-slit spectrum. The lack of detection of the LAEs in deep continuum images and the low inferred Ly$alpha$ luminosities show the LAEs to be intrinsically faint, low-mass galaxies (L<0.1 L*, M_star< 0.1 M*). An echelle spectrum of the QSO reveals strong Ly-alpha absorption within $pm200$ km/s from the LAEs. Our absorption line analysis leads to HI column densities in the range of log N(HI) =16-18. Associated absorption from ionic metal species CIV and SiIV constrains the gas metallicities to ~0.01 solar if the gas is optically thin, and possibly as low as ~0.001 solar if the gas is optically thick, assuming photoionization equilibrium. While the inferred metallicities are at least a factor of ten lower than expected metallicities in the interstellar medium (ISM) of these LAEs, they are consistent with the observed chemical enrichment level in the IGM at the same epoch. Total metal abundances and kinematic arguments suggest that these faint galaxies have not been able to affect the properties of their surrounding gas. The projected spatial alignment of the LAEs, together with the kinematic quiescence and correspondence between the LAEs and absorbing gas in velocity space suggests that these observations probe a possible filamentary structure. Taken together with the blue-dominant Ly$alpha$ emission line profile of one of the objects, the evidence suggests that the absorbing gas is part of an accretion stream of low-metallicity gas in the IGM.
We present the results from a stellar population modeling analysis of a sample of 162 z=4.5, and 14 z=5.7 Lyman alpha emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 um from the Spitzer Lyman Alpha Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 um for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >3-sigma in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8 to 10^11 Msol. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr - 1 Gyr, while the remainder have ages < 100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8 -- 20 x 10^8 Msol) and young (64 - 570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star-formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z=4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Lyman alpha photon escape.
The Ly-alpha luminosity function (LF) of high-redshift Ly-alpha emitters (LAEs) is one of the few observables of the re-ionization epoch accessible to date with 8-10 m class telescopes. The evolution with redshift allows one to constrain the evolution of LAEs and their role in re-ionizing the Universe at the end of the Dark Ages. We have performed a narrow-band imaging program at 1.06 microns at the CFHT, targeting Ly-alpha emitters at redshift z ~ 7.7 in the CFHT-LS D1 field. From these observations we have derived a photometric sample of 7 LAE candidates at z ~ 7.7. We derive luminosity functions for the full sample of seven objects and for sub-samples of four objects. If the brightest objects in our sample are real, we infer a luminosity function which would be difficult to reconcile with previous work at lower redshift. More definitive conclusions will require spectroscopic confirmation.