Do you want to publish a course? Click here

Transformer-based Spatial-Temporal Feature Learning for EEG Decoding

430   0   0.0 ( 0 )
 Added by Yonghao Song
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

At present, people usually use some methods based on convolutional neural networks (CNNs) for Electroencephalograph (EEG) decoding. However, CNNs have limitations in perceiving global dependencies, which is not adequate for common EEG paradigms with a strong overall relationship. Regarding this issue, we propose a novel EEG decoding method that mainly relies on the attention mechanism. The EEG data is firstly preprocessed and spatially filtered. And then, we apply attention transforming on the feature-channel dimension so that the model can enhance more relevant spatial features. The most crucial step is to slice the data in the time dimension for attention transforming, and finally obtain a highly distinguishable representation. At this time, global averaging pooling and a simple fully-connected layer are used to classify different categories of EEG data. Experiments on two public datasets indicate that the strategy of attention transforming effectively utilizes spatial and temporal features. And we have reached the level of the state-of-the-art in multi-classification of EEG, with fewer parameters. As far as we know, it is the first time that a detailed and complete method based on the transformer idea has been proposed in this field. It has good potential to promote the practicality of brain-computer interface (BCI). The source code can be found at: textit{https://github.com/anranknight/EEG-Transformer}.



rate research

Read More

Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial-temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.
373 - Xin Zhou , Le Kang , Zhiyu Cheng 2021
With rapidly evolving internet technologies and emerging tools, sports related videos generated online are increasing at an unprecedentedly fast pace. To automate sports video editing/highlight generation process, a key task is to precisely recognize and locate the events in the long untrimmed videos. In this tech report, we present a two-stage paradigm to detect what and when events happen in soccer broadcast videos. Specifically, we fine-tune multiple action recognition models on soccer data to extract high-level semantic features, and design a transformer based temporal detection module to locate the target events. This approach achieved the state-of-the-art performance in both two tasks, i.e., action spotting and replay grounding, in the SoccerNet-v2 Challenge, under CVPR 2021 ActivityNet workshop. Our soccer embedding features are released at https://github.com/baidu-research/vidpress-sports. By sharing these features with the broader community, we hope to accelerate the research into soccer video understanding.
Machine learning methods, such as deep learning, show promising results in the medical domain. However, the lack of interpretability of these algorithms may hinder their applicability to medical decision support systems. This paper studies an interpretable deep learning technique, called SincNet. SincNet is a convolutional neural network that efficiently learns customized band-pass filters through trainable sinc-functions. In this study, we use SincNet to analyze the neural activity of individuals with Autism Spectrum Disorder (ASD), who experience characteristic differences in neural oscillatory activity. In particular, we propose a novel SincNet-based neural network for detecting emotions in ASD patients using EEG signals. The learned filters can be easily inspected to detect which part of the EEG spectrum is used for predicting emotions. We found that our system automatically learns the high-$alpha$ (9-13 Hz) and $beta$ (13-30 Hz) band suppression often present in individuals with ASD. This result is consistent with recent neuroscience studies on emotion recognition, which found an association between these band suppressions and the behavioral deficits observed in individuals with ASD. The improved interpretability of SincNet is achieved without sacrificing performance in emotion recognition.
328 - Zhen Fu , Bo Wang , Xihong Wu 2021
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD, the linear assumption was considered oversimplified and the decoding accuracy remained lower for shorter decoding windows. Recently, nonlinear models based on deep neural networks (DNN) have been proposed to solve this problem. However, these models did not fully utilize both the spatial and temporal features of EEG, and the interpretability of DNN models was rarely investigated. In this paper, we proposed novel convolutional recurrent neural network (CRNN) based regression model and classification model, and compared them with both the linear model and the state-of-the-art DNN models. Results showed that, our proposed CRNN-based classification model outperformed others for shorter decoding windows (around 90% for 2 s and 5 s). Although worse than classification models, the decoding accuracy of the proposed CRNN-based regression model was about 5% greater than other regression models. The interpretability of DNN models was also investigated by visualizing layers weight.
People suffering from hearing impairment often have difficulties participating in conversations in so-called `cocktail party scenarios with multiple people talking simultaneously. Although advanced algorithms exist to suppress background noise in these situations, a hearing device also needs information on which of these speakers the user actually aims to attend to. The correct (attended) speaker can then be enhanced using this information, and all other speakers can be treated as background noise. Recent neuroscientific advances have shown that it is possible to determine the focus of auditory attention from non-invasive neurorecording techniques, such as electroencephalography (EEG). Based on these new insights, a multitude of auditory attention decoding (AAD) algorithms have been proposed, which could, combined with the appropriate speaker separation algorithms and miniaturized EEG sensor devices, lead to so-called neuro-steered hearing devices. In this paper, we provide a broad review and a statistically grounded comparative study of EEG-based AAD algorithms and address the main signal processing challenges in this field.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا