Do you want to publish a course? Click here

A Game-Theoretic Taxonomy of Visual Concepts in DNNs

89   0   0.0 ( 0 )
 Added by Xu Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we rethink how a DNN encodes visual concepts of different complexities from a new perspective, i.e. the game-theoretic multi-order interactions between pixels in an image. Beyond the categorical taxonomy of objects and the cognitive taxonomy of textures and shapes, we provide a new taxonomy of visual concepts, which helps us interpret the encoding of shapes and textures, in terms of concept complexities. In this way, based on multi-order interactions, we find three distinctive signal-processing behaviors of DNNs encoding textures. Besides, we also discover the flexibility for a DNN to encode shapes is lower than the flexibility of encoding textures. Furthermore, we analyze how DNNs encode outlier samples, and explore the impacts of network architectures on interactions. Additionally, we clarify the crucial role of the multi-order interactions in real-world applications. The code will be released when the paper is accepted.



rate research

Read More

Machine learning has made major advances in categorizing objects in images, yet the best algorithms miss important aspects of how people learn and think about categories. People can learn richer concepts from fewer examples, including causal models that explain how members of a category are formed. Here, we explore the limits of this human ability to infer causal programs -- latent generating processes with nontrivial algorithmic properties -- from one, two, or three visual examples. People were asked to extrapolate the programs in several ways, for both classifying and generating new examples. As a theory of these inductive abilities, we present a Bayesian program learning model that searches the space of programs for the best explanation of the observations. Although variable, peoples judgments are broadly consistent with the model and inconsistent with several alternatives, including a pre-trained deep neural network for object recognition, indicating that people can learn and reason with rich algorithmic abstractions from sparse input data.
162 - Ambar Pal , Rene Vidal 2020
Research in adversarial learning follows a cat and mouse game between attackers and defenders where attacks are proposed, they are mitigated by new defenses, and subsequently new attacks are proposed that break earlier defenses, and so on. However, it has remained unclear as to whether there are conditions under which no better attacks or defenses can be proposed. In this paper, we propose a game-theoretic framework for studying attacks and defenses which exist in equilibrium. Under a locally linear decision boundary model for the underlying binary classifier, we prove that the Fast Gradient Method attack and the Randomized Smoothing defense form a Nash Equilibrium. We then show how this equilibrium defense can be approximated given finitely many samples from a data-generating distribution, and derive a generalization bound for the performance of our approximation.
Model-based reinforcement learning (MBRL) has recently gained immense interest due to its potential for sample efficiency and ability to incorporate off-policy data. However, designing stable and efficient MBRL algorithms using rich function approximators have remained challenging. To help expose the practical challenges in MBRL and simplify algorithm design from the lens of abstraction, we develop a new framework that casts MBRL as a game between: (1) a policy player, which attempts to maximize rewards under the learned model; (2) a model player, which attempts to fit the real-world data collected by the policy player. For algorithm development, we construct a Stackelberg game between the two players, and show that it can be solved with approximate bi-level optimization. This gives rise to two natural families of algorithms for MBRL based on which player is chosen as the leader in the Stackelberg game. Together, they encapsulate, unify, and generalize many previous MBRL algorithms. Furthermore, our framework is consistent with and provides a clear basis for heuristics known to be important in practice from prior works. Finally, through experiments we validate that our proposed algorithms are highly sample efficient, match the asymptotic performance of model-free policy gradient, and scale gracefully to high-dimensional tasks like dexterous hand manipulation. Additional details and code can be obtained from the project page at https://sites.google.com/view/mbrl-game
The literature on ranking from ordinal data is vast, and there are several ways to aggregate overall preferences from pairwise comparisons between objects. In particular, it is well known that any Nash equilibrium of the zero sum game induced by the preference matrix defines a natural solution concept (winning distribution over objects) known as a von Neumann winner. Many real-world problems, however, are inevitably multi-criteria, with different pairwise preferences governing the different criteria. In this work, we generalize the notion of a von Neumann winner to the multi-criteria setting by taking inspiration from Blackwells approachability. Our framework allows for non-linear aggregation of preferences across criteria, and generalizes the linearization-based approach from multi-objective optimization. From a theoretical standpoint, we show that the Blackwell winner of a multi-criteria problem instance can be computed as the solution to a convex optimization problem. Furthermore, given random samples of pairwise comparisons, we show that a simple plug-in estimator achieves near-optimal minimax sample complexity. Finally, we showcase the practical utility of our framework in a user study on autonomous driving, where we find that the Blackwell winner outperforms the von Neumann winner for the overall preferences.
102 - Hao Zhang , Sen Li , Yinchao Ma 2020
This paper aims to understand and improve the utility of the dropout operation from the perspective of game-theoretic interactions. We prove that dropout can suppress the strength of interactions between input variables of deep neural networks (DNNs). The theoretic proof is also verified by various experiments. Furthermore, we find that such interactions were strongly related to the over-fitting problem in deep learning. Thus, the utility of dropout can be regarded as decreasing interactions to alleviate the significance of over-fitting. Based on this understanding, we propose an interaction loss to further improve the utility of dropout. Experimental results have shown that the interaction loss can effectively improve the utility of dropout and boost the performance of DNNs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا