No Arabic abstract
This paper addresses the challenge of classifying polarimetric SAR images by leveraging the peculiar characteristics of the polarimetric covariance matrix (PCM). To this end, a general framework to solve a multiple hypothesis test is introduced with the aim to detect and classify contextual spatial variations in polarimetric SAR images. Specifically, under the null hypothesis, only an unknown structure is assumed for data belonging to a 2-dimensional spatial sliding window, whereas under each alternative hypothesis, data are partitioned into subsets sharing different structures. The problem of partition estimation is solved by resorting to hidden random variables representative of covariance structure classes and the expectation-maximization algorithm. The effectiveness of the proposed detection strategies is demonstrated on both simulated and real polarimetric SAR data also in comparison with existing classification algorithms.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites.
The data fusion technology aims to aggregate the characteristics of different data and obtain products with multiple data advantages. To solves the problem of reduced resolution of PolSAR images due to system limitations, we propose a fully polarimetric synthetic aperture radar (PolSAR) images and single-polarization synthetic aperture radar SAR (SinSAR) images fusion network to generate high-resolution PolSAR (HR-PolSAR) images. To take advantage of the polarimetric information of the low-resolution PolSAR (LR-PolSAR) image and the spatial information of the high-resolution single-polarization SAR (HR-SinSAR) image, we propose a fusion framework for joint LR-PolSAR image and HR-SinSAR image and design a cross-attention mechanism to extract features from the joint input data. Besides, based on the physical imaging mechanism, we designed the PolSAR polarimetric loss function for constrained network training. The experimental results confirm the superiority of fusion network over traditional algorithms. The average PSNR is increased by more than 3.6db, and the average MAE is reduced to less than 0.07. Experiments on polarimetric decomposition and polarimetric signature show that it maintains polarimetric information well.
Common horizontal bounding box (HBB)-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more diffcult and lead to performance degradation. In this paper, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an Intersect over Union (IOU) -weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Experiments on the Rotating SAR Ship Detection Dataset (RSSDD) show that the proposed method can achieve better detection performance over other comparison algorithms and other OBB encoding schemes, demonstrating the effectiveness of our method.
Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel underline{D}eformable underline{R}esidual Convolutional Neural underline{N}etwork (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DRNet.
Fourier domain methods are fast algorithms for SAR imaging. They typically involve an interpolation in the frequency domain to re-grid non-uniform data so inverse fast Fourier transforms can be performed. In this paper, we apply a frame reconstruction algorithm, extending the non-uniform fast Fourier transform, to stripmap SAR data. Further, we present an improved thresholded frame reconstruction algorithm for robust performance and improved computational efficiency. We demonstrate compelling results on real stripmap SAR data.