Do you want to publish a course? Click here

Enhancing the third-order optical nonlinear performance in CMOS devices with integrated 2D graphene oxide films

118   0   0.0 ( 0 )
 Added by David Moss
 Publication date 2021
  fields Physics
and research's language is English
 Authors David Moss




Ask ChatGPT about the research

We report enhanced nonlinear optics in complementary metal oxide semiconductor compatible photonic platforms through the use of layered two dimensional (2D) graphene oxide (GO) films. We integrate GO films with silicon on insulator nanowires (SOI), high index doped silica glass (Hydex) and silicon nitride (SiN) waveguides and ring resonators, to demonstrate an enhanced optical nonlinearity including Kerr nonlinearity and four wave mixing (FWM). The GO films are integrated using a large area, transfer free, layer by layer method while the film placement and size are controlled by photolithography. In SOI nanowires we observe a dramatic enhancement in both the Kerr nonlinearity and nonlinear figure of merit (FOM) due to the highly nonlinear GO films. Self phase modulation (SPM) measurements show significant spectral broadening enhancement for SOI nanowires coated with patterned films of GO. The dependence of GO Kerr nonlinearity on layer number and pulse energy shows trends of the layered GO films from 2D to quasi bulk like behavior. The nonlinear parameter of GO coated SOI nanowires is increased 16 fold, with the nonlinear FOM increasing over 20 times to a FOM greater than 5. We also observe an improved FWM efficiency in SiN waveguides integrated with 2D layered GO films. FWM measurements for samples with different numbers of GO layers and at different pump powers are performed, achieving up to 7.3 dB conversion efficiency (CE) enhancement for a uniformly coated device with 1 layer of GO and 9.1 dB for a patterned device with 5 layers of GO. These results reveal the strong potential of GO films to improve the nonlinear optics of silicon, Hydex and SiN photonic devices.



rate research

Read More

We theoretically investigate and optimize the performance of four-wave mixing (FWM) in microring resonators (MRRs) integrated with two-dimensional (2D) layered graphene oxide (GO) films. Owing to the interaction between the MRRs and the highly nonlinear GO films as well as to the resonant enhancement effect, the FWM efficiency in GO-coated MRRs can be significantly improved. Based on previous experiments, we perform detailed analysis for the influence of the GO film parameters and MRR coupling strength on the FWM conversion efficiency (CE) of the hybrid MRRs. By optimizing the device parameters to balance the trade-off between the Kerr nonlinearity and loss, we achieve a high CE enhancement of ~18.6 dB relative to the uncoated MRR, which is ~8.3 dB higher than previous experimental results. The influence of photo-thermal changes in the GO films as well as variations in the MRR parameters such as the ring radius and waveguide dispersion on the FWM performance is also discussed. These results highlight the significantly improved FWM performance that can be achieved in MRRs incorporating GO films and provide a guide for optimizing their FWM performance.
As a new group of advanced 2D layered materials, bismuth oxyhalides, i.e., BiOX (X = Cl, Br, I), have recently become of great interest. In this work, we characterize the third-order optical nonlinearities of BiOBr, an important member of the BiOX family. The nonlinear absorption and Kerr nonlinearity of BiOBr nanoflakes at both 800 nm and 1550 nm are characterized via the Z-Scan technique. Experimental results show that BiOBr nanoflakes exhibit a large nonlinear absorption coefficient = b{eta} = 10-7 m/W as well as a large Kerr coefficient n2 = 10-14 m2/W. We also note that the n2 of BiOBr reverses sign from negative to positive as the wavelength is changed from 800 nm to 1550 nm. We further characterize the thickness-dependent nonlinear optical properties of BiOBr nanoflakes, finding that the magnitudes of b{eta} and n2 increase with decreasing thickness of the BiOBr nanoflakes. Finally, we integrate BiOBr nanoflakes into silicon integrated waveguides and measure their insertion loss, with the extracted waveguide propagation loss showing good agreement with mode simulations based on ellipsometry measurements. These results confirm the strong potential of BiOBr as a promising nonlinear optical material for high-performance hybrid integrated photonic devices.
With the growing demand for massive amounts of data processing transmission and storage it is becoming more challenging to optimize the trade off between high speed and energy consumption in current optoelectronic devices. Heterogeneous material integration into Silicon and Nitride photonics has demonstrated high speed potential but with millimeter to centimeter large footprints. The search for an electro optic modulator that combines high speed with energy efficiency and compactness to enable high component density on chip is yet ongoing. Here we demonstrate a 60 GHz fast (3dB roll off) micrometer compact and 4 fJ per bit efficient Graphene based modulator integrated on Silicon photonics platform. Two dual Graphene layers are capacitively biased into modulating the waveguide modes optical effective index via Pauli blocking mechanism. The electro optic response which is further enhanced by a vertical distributed Bragg reflector cavity thus reducing the drive voltage by about 40 times while preserving an adequate modulation depth (10 dB). Compact efficient and fast modulators enable high photonic chip density and performance with key applications in signal processing sensor platforms and analog and neuromorphic photonic processors.
Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance between generated weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.
While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q $Si_3N_4$ resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا