No Arabic abstract
While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q $Si_3N_4$ resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.
Silicon photonics enables wafer-scale integration of optical functionalities on chip. A silicon-based laser frequency combs could significantly expand the applications of silicon photonics, by providing integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent LiDAR, or photonics-assisted signal processing. Here, we report on heterogeneously integrated laser soliton microcombs combining both InP/Si semiconductor lasers and ultralow-loss silicon nitride microresonators on monolithic silicon substrate. Thousands of devices are produced from a single wafer using standard CMOS techniques. Using on-chip electrical control of the microcomb-laser relative optical phase, these devices can output single-soliton microcombs with 100 GHz repetition rate. Our approach paves the way for large-volume, low-cost manufacturing of chip-based frequency combs for next-generation high-capacity transceivers, datacenters, space and mobile platforms.
The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb based radiofrequency (RF) filters have required programmable pulse shapers, which inevitably increase the system cost, footprint, and complexity. Here, by leveraging the smooth spectral envelope of single solitons, we demonstrate for the first time microcomb based RF filters free from any additional pulse shaping. More importantly, we achieve all-optical reconfiguration of the RF filters by exploiting the intrinsically rich soliton configurations. Specifically, we harness the perfect soliton crystals to multiply the comb spacing thereby dividing the filter passband frequencies. Also, a completely novel approach based on the versatile interference patterns of two solitons within one round-trip, enables wide reconfigurability of RF passband frequencies according to their relative azimuthal angles. The proposed schemes demand neither an interferometric setup nor another pulse shaper for filter reconfiguration, providing a practical route towards chip-scale, widely reconfigurable microcomb based RF filters.
Soliton microcombs -- phase-locked microcavity frequency combs -- have become the foundation of several classical technologies in integrated photonics, including spectroscopy, LiDAR, and optical computing. Despite the predicted multimode entanglement across the comb, experimental study of the quantum optics of the soliton microcomb has been elusive. In this work, we use second-order photon correlations to study the underlying quantum processes of soliton microcombs in an integrated silicon carbide microresonator. We show that a stable temporal lattice of solitons can isolate a multimode below-threshold Gaussian state from any admixture of coherent light, and predict that all-to-all entanglement can be realized for the state. Our work opens a pathway toward a soliton-based multimode quantum resource.
Dual-comb interferometry utilizes two optical frequency combs to map the optical fields spectrum to a radio-frequency signal without using moving parts, allowing improved speed and accuracy. However, the method is compounded by the complexity and demanding stability associated with operating multiple laser frequency combs. To overcome these challenges, we demonstrate simultaneous generation of multiple frequency combs from a single optical microresonator and a single continuous-wave laser. Similar to space-division multiplexing, we generate several dissipative Kerr soliton states - circulating solitonic pulses driven by a continuous-wave laser - in different spatial (or polarization) modes of a $mathrm{MgF_2}$ microresonator. Up to three distinct combs are produced simultaneously, featuring excellent mutual coherence and substantial repetition rate differences, useful for fast acquisition and efficient rejection of soliton intermodulation products. Dual-comb spectroscopy with amplitude and phase retrieval, as well as optical sampling of a breathing soliton, is realised with the free-running system. Compatibility with photonic-integrated resonators could enable the deployment of dual- and triple-comb-based methods to applications where they remained impractical with current technology.
The emerging microresonator-based frequency combs revolutionize a broad range of applications from optical communications to astronomical calibration. Despite of their significant merits, low energy efficiency and the lack of all-optical dynamical control severely hinder the transfer of microcomb system to real-world applications. Here, by introducing active lasing medium into the soliton microcomb, for the first time, we experimentally achieve the chiral soliton with agile on-off switch and tunable dual-comb generation in a packaged microresonator. It is found that such a microresonator enables a soliton slingshot effect, the rapid soliton formation arising from the extra energy accumulation induced by inter-modal couplings. Moreover, tuning the erbium gain can generate versatile multi-soliton states, and extend the soliton operation window to a remarkable range over 18 GHz detuning. Finally, the gain-assisted chirality of counterpropagating soliton is demonstrated, which enables an unprecedented fast on-off switching of soliton microcombs. The non-trivial chiral soliton formation with active controllability inspires new paradigms of miniature optical frequency combs and brings the fast tunable soliton tools within reach.