No Arabic abstract
Solving the optimal power flow (OPF) problem in real-time electricity market improves the efficiency and reliability in the integration of low-carbon energy resources into the power grids. To address the scalability and adaptivity issues of existing end-to-end OPF learning solutions, we propose a new graph neural network (GNN) framework for predicting the electricity market prices from solving OPFs. The proposed GNN-for-OPF framework innovatively exploits the locality property of prices and introduces physics-aware regularization, while attaining reduced model complexity and fast adaptivity to varying grid topology. Numerical tests have validated the learning efficiency and adaptivity improvements of our proposed method over existing approaches.
Dynamical systems comprised of autonomous agents arise in many relevant problems such as multi-agent robotics, smart grids, or smart cities. Controlling these systems is of paramount importance to guarantee a successful deployment. Optimal centralized controllers are readily available but face limitations in terms of scalability and practical implementation. Optimal decentralized controllers, on the other hand, are difficult to find. In this paper, we propose a framework using graph neural networks (GNNs) to learn decentralized controllers from data. While GNNs are naturally distributed architectures, making them perfectly suited for the task, we adapt them to handle delayed communications as well. Furthermore, they are equivariant and stable, leading to good scalability and transferability properties. The problem of flocking is explored to illustrate the potential of GNNs in learning decentralized controllers.
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
Active network management (ANM) of electricity distribution networks include many complex stochastic sequential optimization problems. These problems need to be solved for integrating renewable energies and distributed storage into future electrical grids. In this work, we introduce Gym-ANM, a framework for designing reinforcement learning (RL) environments that model ANM tasks in electricity distribution networks. These environments provide new playgrounds for RL research in the management of electricity networks that do not require an extensive knowledge of the underlying dynamics of such systems. Along with this work, we are releasing an implementation of an introductory toy-environment, ANM6-Easy, designed to emphasize common challenges in ANM. We also show that state-of-the-art RL algorithms can already achieve good performance on ANM6-Easy when compared against a model predictive control (MPC) approach. Finally, we provide guidelines to create new Gym-ANM environments differing in terms of (a) the distribution network topology and parameters, (b) the observation space, (c) the modelling of the stochastic processes present in the system, and (d) a set of hyperparameters influencing the reward signal. Gym-ANM can be downloaded at https://github.com/robinhenry/gym-anm.
In electricity markets, locational marginal price (LMP) forecasting is particularly important for market participants in making reasonable bidding strategies, managing potential trading risks, and supporting efficient system planning and operation. Unlike existing methods that only consider LMPs temporal features, this paper tailors a spectral graph convolutional network (GCN) to greatly improve the accuracy of short-term LMP forecasting. A three-branch network structure is then designed to match the structure of LMPs compositions. Such kind of network can extract the spatial-temporal features of LMPs, and provide fast and high-quality predictions for all nodes simultaneously. The attention mechanism is also implemented to assign varying importance weights between different nodes and time slots. Case studies based on the IEEE-118 test system and real-world data from the PJM validate that the proposed model outperforms existing forecasting models in accuracy, and maintains a robust performance by avoiding extreme errors.
On-line detection of anomalies in time series is a key technique used in various event-sensitive scenarios such as robotic system monitoring, smart sensor networks and data center security. However, the increasing diversity of data sources and the variety of demands make this task more challenging than ever. Firstly, the rapid increase in unlabeled data means supervised learning is becoming less suitable in many cases. Secondly, a large portion of time series data have complex seasonality features. Thirdly, on-line anomaly detection needs to be fast and reliable. In light of this, we have developed a prediction-driven, unsupervised anomaly detection scheme, which adopts a backbone model combining the decomposition and the inference of time series data. Further, we propose a novel metric, Local Trend Inconsistency (LTI), and an efficient detection algorithm that computes LTI in a real-time manner and scores each data point robustly in terms of its probability of being anomalous. We have conducted extensive experimentation to evaluate our algorithm with several datasets from both public repositories and production environments. The experimental results show that our scheme outperforms existing representative anomaly detection algorithms in terms of the commonly used metric, Area Under Curve (AUC), while achieving the desired efficiency.