Do you want to publish a course? Click here

Graph Neural Networks for Decentralized Controllers

104   0   0.0 ( 0 )
 Added by Fernando Gama
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Dynamical systems comprised of autonomous agents arise in many relevant problems such as multi-agent robotics, smart grids, or smart cities. Controlling these systems is of paramount importance to guarantee a successful deployment. Optimal centralized controllers are readily available but face limitations in terms of scalability and practical implementation. Optimal decentralized controllers, on the other hand, are difficult to find. In this paper, we propose a framework using graph neural networks (GNNs) to learn decentralized controllers from data. While GNNs are naturally distributed architectures, making them perfectly suited for the task, we adapt them to handle delayed communications as well. Furthermore, they are equivariant and stable, leading to good scalability and transferability properties. The problem of flocking is explored to illustrate the potential of GNNs in learning decentralized controllers.



rate research

Read More

Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information. While centralized controllers are readily available, they face limitations in terms of scalability and implementation, as they do not respect the distributed information structure imposed by the network system of agents. Given the difficulties in finding optimal decentralized controllers, we propose a novel framework using graph neural networks (GNNs) to emph{learn} these controllers. GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties. The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
Solving the optimal power flow (OPF) problem in real-time electricity market improves the efficiency and reliability in the integration of low-carbon energy resources into the power grids. To address the scalability and adaptivity issues of existing end-to-end OPF learning solutions, we propose a new graph neural network (GNN) framework for predicting the electricity market prices from solving OPFs. The proposed GNN-for-OPF framework innovatively exploits the locality property of prices and introduces physics-aware regularization, while attaining reduced model complexity and fast adaptivity to varying grid topology. Numerical tests have validated the learning efficiency and adaptivity improvements of our proposed method over existing approaches.
441 - He Wang , Yifei Shen , Ziyuan Wang 2021
In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination. Existing optimization-based algorithms suffer from issues of model mismatch and poor convergence speed, and thus their performance would be degraded, provided that the number of communication rounds is limited. This motivates us to propose a learning-based framework, which unrolls well-noted decentralized optimization algorithms (e.g., Prox-DGD and PG-EXTRA) into graph neural networks (GNNs). By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue. Our convergence analysis (with PG-EXTRA as the base algorithm) reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent. The simulation results demonstrate that the proposed GNN-based learning methods prominently outperform several state-of-the-art optimization-based algorithms in convergence speed and recovery error.
With the rise of smartphones and the internet-of-things, data is increasingly getting generated at the edge on local, personal devices. For privacy, latency and energy saving reasons, this shift is causing machine learning algorithms to move towards decentralisation with the data and algorithms stored, and even trained, locally on devices. The device hardware becomes the main bottleneck for model capability in this set-up, creating a need for slimmed down, more efficient neural networks. Neural network pruning and quantisation are two methods that have been developed for this, with both approaches demonstrating impressive results in reducing the computational cost without sacrificing significantly on model performance. However, the understanding behind these reduction methods remains underdeveloped. To address this issue, a semi-definite program is introduced to bound the worst-case error caused by pruning or quantising a neural network. The method can be applied to many neural network structures and nonlinear activation functions with the bounds holding robustly for all inputs in specified sets. It is hoped that the computed bounds will provide certainty to the performance of these algorithms when deployed on safety-critical systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا