Do you want to publish a course? Click here

Exploring Visual Context for Weakly Supervised Person Search

89   0   0.0 ( 0 )
 Added by Yichao Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Person search has recently emerged as a challenging task that jointly addresses pedestrian detection and person re-identification. Existing approaches follow a fully supervised setting where both bounding box and identity annotations are available. However, annotating identities is labor-intensive, limiting the practicability and scalability of current frameworks. This paper inventively considers weakly supervised person search with only bounding box annotations. We proposed the first framework to address this novel task, namely Context-Guided Person Search (CGPS), by investigating three levels of context clues (i.e., detection, memory and scene) in unconstrained natural images. The first two are employed to promote local and global discriminative capabilities, while the latter enhances clustering accuracy. Despite its simple design, our CGPS boosts the baseline model by 8.3% in mAP on CUHK-SYSU. Surprisingly, it even achieves comparable performance to two-step person search models, while displaying higher efficiency. Our code is available at https://github.com/ljpadam/CGPS.



rate research

Read More

234 - Chuchu Han , Kai Su , Dongdong Yu 2021
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities. Large-scale labeled training data is often difficult to collect, especially for person identities. A natural question is whether a good person search model can be trained without the need of identity supervision. In this paper, we present a weakly supervised setting where only bounding box annotations are available. Based on this new setting, we provide an effective baseline model termed Region Siamese Networks (R-SiamNets). Towards learning useful representations for recognition in the absence of identity labels, we supervise the R-SiamNet with instance-level consistency loss and cluster-level contrastive loss. For instance-level consistency learning, the R-SiamNet is constrained to extract consistent features from each person region with or without out-of-region context. For cluster-level contrastive learning, we enforce the aggregation of closest instances and the separation of dissimilar ones in feature space. Extensive experiments validate the utility of our weakly supervised method. Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark, which surpasses several fully supervised methods, such as OIM and MGTS, by a clear margin. More promising performance can be reached by incorporating extra training data. We hope this work could encourage the future research in this field.
Person re-identification has achieved great progress with deep convolutional neural networks. However, most previous methods focus on learning individual appearance feature embedding, and it is hard for the models to handle difficult situations with different illumination, large pose variance and occlusion. In this work, we take a step further and consider employing context information for person search. For a probe-gallery pair, we first propose a contextual instance expansion module, which employs a relative attention module to search and filter useful context information in the scene. We also build a graph learning framework to effectively employ context pairs to update target similarity. These two modules are built on top of a joint detection and instance feature learning framework, which improves the discriminativeness of the learned features. The proposed framework achieves state-of-the-art performance on two widely used person search datasets.
To construct an algorithm that can provide robust person detection, we present a dataset with over 8 million images that was produced in a weakly supervised manner. Through labor-intensive human annotation, the person detection research community has produced relatively small datasets containing on the order of 100,000 images, such as the EuroCity Persons dataset, which includes 240,000 bounding boxes. Therefore, we have collected 8.7 million images of persons based on a two-step collection process, namely person detection with an existing detector and data refinement for false positive suppression. According to the experimental results, the Weakly Supervised Person Dataset (WSPD) is simple yet effective for person detection pre-training. In the context of pre-trained person detection algorithms, our WSPD pre-trained model has 13.38 and 6.38% better accuracy than the same model trained on the fully supervised ImageNet and EuroCity Persons datasets, respectively, when verified with the Caltech Pedestrian.
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG methods require millions of manually annotated bounding boxes for training, and are computationally inefficient, as they exhaustively process all pairs of object proposals to detect predicates. In this paper, we address those two limitations by first proposing a generalized formulation of SGG, namely Visual Semantic Parsing, which disentangles entity and predicate recognition, and enables sub-quadratic performance. Then we propose the Visual Semantic Parsing Network, VSPNet, based on a dynamic, attention-based, bipartite message passing framework that jointly infers graph nodes and edges through an iterative process. Additionally, we propose the first graph-based weakly supervised learning framework, based on a novel graph alignment algorithm, which enables training without bounding box annotations. Through extensive experiments, we show that VSPNet outperforms weakly supervised baselines significantly and approaches fully supervised performance, while being several times faster. We publicly release the source code of our method.
Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been deeply studied in recent years, conventional data augmentation approaches for WSSS usually employ geometrical transformations, random cropping and color jittering. However, merely increasing the same contextual semantic data does not bring much gain to the networks to distinguish the objects, e.g., the correct image-level classification of aeroplane may be not only due to the recognition of the object itself, but also its co-occurrence context like sky, which will cause the model to focus less on the object features. To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information. To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا