Do you want to publish a course? Click here

Weakly Supervised Dataset Collection for Robust Person Detection

91   0   0.0 ( 0 )
 Added by Hirokatsu Kataoka
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To construct an algorithm that can provide robust person detection, we present a dataset with over 8 million images that was produced in a weakly supervised manner. Through labor-intensive human annotation, the person detection research community has produced relatively small datasets containing on the order of 100,000 images, such as the EuroCity Persons dataset, which includes 240,000 bounding boxes. Therefore, we have collected 8.7 million images of persons based on a two-step collection process, namely person detection with an existing detector and data refinement for false positive suppression. According to the experimental results, the Weakly Supervised Person Dataset (WSPD) is simple yet effective for person detection pre-training. In the context of pre-trained person detection algorithms, our WSPD pre-trained model has 13.38 and 6.38% better accuracy than the same model trained on the fully supervised ImageNet and EuroCity Persons datasets, respectively, when verified with the Caltech Pedestrian.



rate research

Read More

Person search has recently emerged as a challenging task that jointly addresses pedestrian detection and person re-identification. Existing approaches follow a fully supervised setting where both bounding box and identity annotations are available. However, annotating identities is labor-intensive, limiting the practicability and scalability of current frameworks. This paper inventively considers weakly supervised person search with only bounding box annotations. We proposed the first framework to address this novel task, namely Context-Guided Person Search (CGPS), by investigating three levels of context clues (i.e., detection, memory and scene) in unconstrained natural images. The first two are employed to promote local and global discriminative capabilities, while the latter enhances clustering accuracy. Despite its simple design, our CGPS boosts the baseline model by 8.3% in mAP on CUHK-SYSU. Surprisingly, it even achieves comparable performance to two-step person search models, while displaying higher efficiency. Our code is available at https://github.com/ljpadam/CGPS.
125 - Dmitrii Marin , Yuri Boykov 2021
Acquisition of training data for the standard semantic segmentation is expensive if requiring that each pixel is labeled. Yet, current methods significantly deteriorate in weakly supervised settings, e.g. where a fraction of pixels is labeled or when only image-level tags are available. It has been shown that regularized losses - originally developed for unsupervised low-level segmentation and representing geometric priors on pixel labels - can considerably improve the quality of weakly supervised training. However, many common priors require optimization stronger than gradient descent. Thus, such regularizers have limited applicability in deep learning. We propose a new robust trust region approach for regularized losses improving the state-of-the-art results. Our approach can be seen as a higher-order generalization of the classic chain rule. It allows neural network optimization to use strong low-level solvers for the corresponding regularizers, including discrete ones.
234 - Chuchu Han , Kai Su , Dongdong Yu 2021
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities. Large-scale labeled training data is often difficult to collect, especially for person identities. A natural question is whether a good person search model can be trained without the need of identity supervision. In this paper, we present a weakly supervised setting where only bounding box annotations are available. Based on this new setting, we provide an effective baseline model termed Region Siamese Networks (R-SiamNets). Towards learning useful representations for recognition in the absence of identity labels, we supervise the R-SiamNet with instance-level consistency loss and cluster-level contrastive loss. For instance-level consistency learning, the R-SiamNet is constrained to extract consistent features from each person region with or without out-of-region context. For cluster-level contrastive learning, we enforce the aggregation of closest instances and the separation of dissimilar ones in feature space. Extensive experiments validate the utility of our weakly supervised method. Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark, which surpasses several fully supervised methods, such as OIM and MGTS, by a clear margin. More promising performance can be reached by incorporating extra training data. We hope this work could encourage the future research in this field.
Anomaly detection with weakly supervised video-level labels is typically formulated as a multiple instance learning (MIL) problem, in which we aim to identify snippets containing abnormal events, with each video represented as a bag of video snippets. Although current methods show effective detection performance, their recognition of the positive instances, i.e., rare abnormal snippets in the abnormal videos, is largely biased by the dominant negative instances, especially when the abnormal events are subtle anomalies that exhibit only small differences compared with normal events. This issue is exacerbated in many methods that ignore important video temporal dependencies. To address this issue, we introduce a novel and theoretically sound method, named Robust Temporal Feature Magnitude learning (RTFM), which trains a feature magnitude learning function to effectively recognise the positive instances, substantially improving the robustness of the MIL approach to the negative instances from abnormal videos. RTFM also adapts dilated convolutions and self-attention mechanisms to capture long- and short-range temporal dependencies to learn the feature magnitude more faithfully. Extensive experiments show that the RTFM-enabled MIL model (i) outperforms several state-of-the-art methods by a large margin on four benchmark data sets (ShanghaiTech, UCF-Crime, XD-Violence and UCSD-Peds) and (ii) achieves significantly improved subtle anomaly discriminability and sample efficiency. Code is available at https://github.com/tianyu0207/RTFM.
170 - Heinrich Dinkel , Kai Yu 2019
Task 4 of the DCASE2018 challenge demonstrated that substantially more research is needed for a real-world application of sound event detection. Analyzing the challenge results it can be seen that most successful models are biased towards predicting long (e.g., over 5s) clips. This work aims to investigate the performance impact of fixed-sized window median filter post-processing and advocate the use of double thresholding as a more robust and predictable post-processing method. Further, four different temporal subsampling methods within the CRNN framework are proposed: mean-max, alpha-mean-max, Lp-norm and convolutional. We show that for this task subsampling the temporal resolution by a neural network enhances the F1 score as well as its robustness towards short, sporadic sound events. Our best single model achieves 30.1% F1 on the evaluation set and the best fusion model 32.5%, while being robust to event length variations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا