No Arabic abstract
The Fisher market is one of the most fundamental models for resource allocation problems in economic theory, wherein agents spend a budget of currency to buy goods that maximize their utilities, while producers sell capacity constrained goods in exchange for currency. However, the consideration of only two types of constraints, i.e., budgets of individual buyers and capacities of goods, makes Fisher markets less amenable for resource allocation settings when agents have additional linear constraints, e.g., knapsack and proportionality constraints. In this work, we introduce a modified Fisher market, where each agent may have additional linear constraints and show that this modification to classical Fisher markets fundamentally alters the properties of the market equilibrium as well as the optimal allocations. These properties of the modified Fisher market prompt us to introduce a budget perturbed social optimization problem (BP-SOP) and set prices based on the dual variables of BP-SOPs capacity constraints. To compute the budget perturbations, we develop a fixed point iterative scheme and validate its convergence through numerical experiments. Since this fixed point iterative scheme involves solving a centralized problem at each step, we propose a new class of distributed algorithms to compute equilibrium prices. In particular, we develop an Alternating Direction Method of Multipliers (ADMM) algorithm with strong convergence guarantees for Fisher markets with homogeneous linear constraints as well as for classical Fisher markets. In this algorithm, the prices are updated based on the tatonnement process, with a step size that is completely independent of the utilities of individual agents. Thus, our mechanism, both theoretically and computationally, overcomes a fundamental limitation of classical Fisher markets, which only consider capacity and budget constraints.
We study the equilibrium computation problem in the Fisher market model with constrained piecewise linear concave (PLC) utilities. This general class captures many well-studied special cases, including markets with PLC utilities, markets with satiation, and matching markets. For the special case of PLC utilities, although the problem is PPAD-hard, Devanur and Kannan (FOCS 2008) gave a polynomial-time algorithm when the number of items is constant. Our main result is a fixed parameter approximation scheme for computing an approximate equilibrium, where the parameters are the number of agents and the approximation accuracy. This provides an answer to an open question by Devanur and Kannan for PLC utilities, and gives a simpler and faster algorithm for matching markets as the one by Alaei, Jalaly and Tardos (EC 2017). The main technical idea is to work with the stronger concept of thrifty equilibria, and approximating the input utility functions by `robust utilities that have favorable marginal properties. With some restrictions, the results also extend to the Arrow--Debreu exchange market model.
The Arrow-Debreu extension of the classic Hylland-Zeckhauser scheme for a one-sided matching market -- called ADHZ in this paper -- has natural applications but has instances which do not admit equilibria. By introducing approximation, we define the $epsilon$-approximate ADHZ model, and we give the following results. * Existence of equilibrium under linear utility functions. We prove that the equilibrium satisfies Pareto optimality, approximate envy-freeness, and approximate weak core stability. * A combinatorial polynomial-time algorithm for an $epsilon$-approximate ADHZ equilibrium for the case of dichotomous, and more generally bi-valued, utilities. * An instance of ADHZ, with dichotomous utilities and a strongly connected demand graph, which does not admit an equilibrium. Since computing an equilibrium for HZ is likely to be highly intractable and because of the difficulty of extending HZ to more general utility functions, Hosseini and Vazirani proposed (a rich collection of) Nash-bargaining-based matching market models. For the dichotomous-utilities case of their model linear Arrow-Debreu Nash bargaining one-sided matching market (1LAD), we give a combinatorial, strongly polynomial-time algorithm and show that it admits a rational convex program.
In a crowdsourcing market, a requester is looking to form a team of workers to perform a complex task that requires a variety of skills. Candidate workers advertise their certified skills and bid prices for their participation. We design four incentive mechanisms for selecting workers to form a valid team (that can complete the task) and determining each individual workers payment. We examine profitability, individual rationality, computational efficiency, and truthfulness for each of the four mechanisms. Our analysis shows that TruTeam, one of the four mechanisms, is superior to the others, particularly due to its computational efficiency and truthfulness. Our extensive simulations confirm the analysis and demonstrate that TruTeam is an efficient and truthful pricing mechanism for team formation in crowdsourcing markets.
This paper is an attempt to deal with the recent realization (Vazirani, Yannakakis 2021) that the Hylland-Zeckhauser mechanism, which has remained a classic in economics for one-sided matching markets, is likely to be highly intractable. HZ uses the power of a pricing mechanism, which has endowed it with nice game-theoretic properties. Hosseini and Vazirani (2021) define a rich collection of Nash-bargaining-based models for one-sided and two-sided matching markets, in both Fisher and Arrow-Debreu settings, together with implementations using available solvers, and very encouraging experimental results. This naturally raises the question of finding efficient combinatorial algorithms for these models. In this paper, we give efficient combinatorial algorithms based on the techniques of multiplicative weights update (MWU) and conditional gradient descent (CGD) for several one-sided and two-sided models defined in HV 2021. Additionally, we define for the first time a Nash-bargaining-based model for non-bipartite matching markets and solve it using CGD. Furthermore, in every case, we study not only the Fisher but also the Arrow-Debreu version; the latter is also called the exchange version. We give natural applications for each model studied. These models inherit the game-theoretic and computational properties of Nash bargaining. We also establish a deep connection between HZ and the Nash-bargaining-based models, thereby confirming that the alternative to HZ proposed in HV 2021 is a principled one.
Aggregative games have many industrial applications, and computing an equilibrium in those games is challenging when the number of players is large. In the framework of atomic aggregative games with coupling constraints, we show that variational Nash equilibria of a large aggregative game can be approximated by a Wardrop equilibrium of an auxiliary population game of smaller dimension. Each population of this auxiliary game corresponds to a group of atomic players of the initial large game. This approach enables an efficient computation of an approximated equilibrium, as the variational inequality characterizing the Wardrop equilibrium is of smaller dimension than the initial one. This is illustrated on an example in the smart grid context.