Do you want to publish a course? Click here

An Efficient and Truthful Pricing Mechanism for Team Formation in Crowdsourcing Markets

161   0   0.0 ( 0 )
 Added by Tony T. Luo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In a crowdsourcing market, a requester is looking to form a team of workers to perform a complex task that requires a variety of skills. Candidate workers advertise their certified skills and bid prices for their participation. We design four incentive mechanisms for selecting workers to form a valid team (that can complete the task) and determining each individual workers payment. We examine profitability, individual rationality, computational efficiency, and truthfulness for each of the four mechanisms. Our analysis shows that TruTeam, one of the four mechanisms, is superior to the others, particularly due to its computational efficiency and truthfulness. Our extensive simulations confirm the analysis and demonstrate that TruTeam is an efficient and truthful pricing mechanism for team formation in crowdsourcing markets.



rate research

Read More

242 - Jiajun Sun 2013
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service quality, especially under a given budget constraint condition. To this end, recently, Singer et al. propose a novel class of auction mechanisms for determining near-optimal prices of tasks for crowdsourcing markets constrained by the given budget. Their mechanisms are very useful to motivate extensive user to truthfully participate in crowdsourcing markets. Although they are so important, there still exist many security and privacy challenges in real-life environments. In this paper, we present a general privacy-preserving verifiable incentive mechanism for crowdsourcing markets with the budget constraint, not only to exploit how to protect the bids and assignments privacy, and the chosen winners privacy in crowdsourcing markets with homogeneous jobs and heterogeneous jobs and identity privacy from users, but also to make the verifiable payment between the platform and users for crowdsourcing applications. Results show that our general privacy-preserving verifiable incentive mechanisms achieve the same results as the generic one without privacy preservation.
We study the power and limitations of posted prices in multi-unit markets, where agents arrive sequentially in an arbitrary order. We prove upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with posted prices, under a range of assumptions about the designers information and agents valuations. Our results provide insights about the relative power of uniform and non-uniform prices, the relative difficulty of different valuation classes, and the implications of different informational assumptions. Among other results, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations, even in an incomplete-information setting and with uniform prices.
With the proliferation of the digital data economy, digital data is considered as the crude oil in the twenty-first century, and its value is increasing. Keeping pace with this trend, the model of data market trading between data providers and data consumers, is starting to emerge as a process to obtain high-quality personal information in exchange for some compensation. However, the risk of privacy violations caused by personal data analysis hinders data providers participation in the data market. Differential privacy, a de-facto standard for privacy protection, can solve this problem, but, on the other hand, it deteriorates the data utility. In this paper, we introduce a pricing mechanism that takes into account the trade-off between privacy and accuracy. We propose a method to induce the data provider to accurately report her privacy price and, we optimize it in order to maximize the data consumers profit within budget constraints. We show formally that the proposed mechanism achieves these properties, and also, validate them experimentally.
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a $1/3$-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a $1/2$-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, values for assigning items to bins are the private information of bidders and the mechanism should provide bidders with incentives to truthfully report their values. The approximation ratio of the mechanism is a significant improvement over the approximation ratio of the existing truthful mechanism for GAP. The proposed mechanism comprises a novel convex optimization program as the allocation rule as well as an appropriate payment rule. To implement the convex program in polynomial time, we propose a fractional local search algorithm which approximates the optimal solution within an arbitrarily small error leading to an approximately truthful-in-expectation mechanism. The presented algorithm improves upon the existing optimization algorithms for GAP in terms of simplicity and runtime while the approximation ratio closely matches the best approximation ratio given for GAP when all inputs are publicly known.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا