Do you want to publish a course? Click here

Existence and Uniqueness of Exact WKB Solutions for Second-Order Singularly Perturbed Linear ODEs

210   0   0.0 ( 0 )
 Added by Nikita Nikolaev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove an existence and uniqueness theorem for exact WKB solutions of general singularly perturbed linear second-order ODEs in the complex domain. These include the one-dimensional time-independent complex Schrodinger equation. Notably, our results are valid both in the case of generic WKB trajectories as well as closed WKB trajectories. We also explain in what sense exact and formal WKB solutions form a basis. As a corollary of the proof, we establish the Borel summability of formal WKB solutions for a large class of problems, and derive an explicit formula for the Borel transform.



rate research

Read More

81 - Nikita Nikolaev 2020
The singularly perturbed Riccati equation is the first-order nonlinear ODE $hbar partial_x f = af^2 + bf + c$ in the complex domain where $hbar$ is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with prescribed asymptotics as $hbar to 0$ in a halfplane. These exact solutions are constructed using the Borel-Laplace method; i.e., they are Borel summations of the formal divergent $hbar$-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrodinger equation with a rational potential.
171 - Yan Lv , A. J. Roberts 2011
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0$ is a small parameter characterising the singular perturbation, and $ u^alpha$,, $0leq alphaleq 1/2$,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small $ u$, u_t=D u+f(u)+ u^alphadot{W} to an error of $ord{ u^alpha}$,.
127 - Xiaoyu Zeng , Yimin Zhang 2017
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly, we search for the mountain pass type critical point for the functional on the $L^2$-normalized manifold, and also prove that this type critical point is unique up to translations. Our proof relies only on some simple energy estimates and avoids using the concentration-compactness principles. These conclusions extend some known results in previous papers.
Given a symmetric Riemannian manifold (M, g), we show some results of genericity for non degenerate sign changing solutions of singularly perturbed nonlinear elliptic problems with respect to the parameters: the positive number {epsilon} and the symmetric metric g. Using these results we obtain a lower bound on the number of non degenerate solutions which change sign exactly once.
The tippedisk is a mathematical-mechanical archetype for a peculiar friction-induced instability phenomenon leading to the inversion of an unbalanced spinning disk, being reminiscent to (but different from) the well-known inversion of the tippetop. A reduced model of the tippedisk, in the form of a three-dimensional ordinary differential equation, has been derived recently, followed by a preliminary local stability analysis of stationary spinning solutions. In the current paper, a global analysis of the reduced system is pursued using the framework of singular perturbation theory. It is shown how the presence of friction leads to slow-fast dynamics and the creation of a two-dimensional slow manifold. Furthermore, it is revealed that a bifurcation scenario involving a homoclinic bifurcation and a Hopf bifurcation leads to an explanation of the inversion phenomenon. In particular, a closed-form condition for the critical spinning speed for the inversion phenomenon is derived. Hence, the tippedisk forms an excellent mathematical-mechanical problem for the analysis of global bifurcations in singularly perturbed dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا