Do you want to publish a course? Click here

XRP Network and Proposal of Flow Index

58   0   0.0 ( 0 )
 Added by Hideaki Aoyama Dr.
 Publication date 2021
  fields Financial
and research's language is English




Ask ChatGPT about the research

XRP is a modern crypto-asset (crypto-currency) developed by Ripple Labs, which has been increasing its financial presence. We study its transaction history available as ledger data. An analysis of its basic statistics, correlations, and network properties are presented. Motivated by the behavior of some nodes with histories of large transactions, we propose a new index: the ``Flow Index. The Flow Index is a pair of indices suitable for characterizing transaction frequencies as a source and destination of a node. Using this Flow Index, we study the global structure of the XRP network and construct bow-tie/walnut structure.



rate research

Read More

How crypto flows among Bitcoin users is an important question for understanding the structure and dynamics of the cryptoasset at a global scale. We compiled all the blockchain data of Bitcoin from its genesis to the year 2020, identified users from anonymous addresses of wallets, and constructed monthly snapshots of networks by focusing on regular users as big players. We apply the methods of bow-tie structure and Hodge decomposition in order to locate the users in the upstream, downstream, and core of the entire crypto flow. Additionally, we reveal principal components hidden in the flow by using non-negative matrix factorization, which we interpret as a probabilistic model. We show that the model is equivalent to a probabilistic latent semantic analysis in natural language processing, enabling us to estimate the number of such hidden components. Moreover, we find that the bow-tie structure and the principal components are quite stable among those big players. This study can be a solid basis on which one can further investigate the temporal change of crypto flow, entry and exit of big players, and so forth.
In this study, we investigate the flow of money among bank accounts possessed by firms in a region by employing an exhaustive list of all the bank transfers in a regional bank in Japan, to clarify how the network of money flow is related to the economic activities of the firms. The network statistics and structures are examined and shown to be similar to those of a nationwide production network. Specifically, the bowtie analysis indicates what we refer to as a walnut structure with core and upstream/downstream components. To quantify the location of an individual account in the network, we used the Hodge decomposition method and found that the Hodge potential of the account has a significant correlation to its position in the bowtie structure as well as to its net flow of incoming and outgoing money and links, namely the net demand/supply of individual accounts. In addition, we used non-negative matrix factorization to identify important factors underlying the entire flow of money; it can be interpreted that these factors are associated with regional economic activities.One factor has a feature whereby the remittance source is localized to the largest city in the region, while the destination is scattered. The other factors correspond to the economic activities specific to different local places.This study serves as a basis for further investigation on the relationship between money flow and economic activities of firms.
We present a simple dynamical model of stock index returns which is grounded on the ability of the Cyclically Adjusted Price Earning (CAPE) valuation ratio devised by Robert Shiller to predict long-horizon performances of the market. More precisely, we discuss a discrete time dynamics in which the return growth depends on three components: i) a momentum component, naturally justified in terms of agents belief that expected returns are higher in bullish markets than in bearish ones, ii) a fundamental component proportional to the logarithmic CAPE at time zero. The initial value of the ratio determines the reference growth level, from which the actual stock price may deviate as an effect of random external disturbances, and iii) a driving component which ensures the diffusive behaviour of stock prices. Under these assumptions, we prove that for a sufficiently large horizon the expected rate of return and the expected gross return are linear in the initial logarithmic CAPE, and their variance goes to zero with a rate of convergence consistent with the diffusive behaviour. Eventually this means that the momentum component may generate bubbles and crashes in the short and medium run, nevertheless the valuation ratio remains a good reference point of future long-run returns.
Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the rich-club coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the worlds trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN.
We present an analysis of the credit market of Japan. The analysis is performed by investigating the bipartite network of banks and firms which is obtained by setting a link between a bank and a firm when a credit relationship is present in a given time window. In our investigation we focus on a community detection algorithm which is identifying communities composed by both banks and firms. We show that the clusters obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. Specifically, we obtain communities of banks and networks for each of the 32 investigated years, and we introduce a method to track the time evolution of these communities on a statistical basis. We then characterize communities by detecting the simultaneous over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32 year long analysis we detect a persistence of the over-expression of attributes of clusters of banks and firms together with a slow dynamics of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks and economic sector of the firm play a role in shaping the credit relationships between banks and firms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا