Do you want to publish a course? Click here

Towards interpreting computer vision based on transformation invariant optimization

123   0   0.0 ( 0 )
 Added by Chen Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Interpreting how does deep neural networks (DNNs) make predictions is a vital field in artificial intelligence, which hinders wide applications of DNNs. Visualization of learned representations helps we humans understand the vision of DNNs. In this work, visualized images that can activate the neural network to the target classes are generated by back-propagation method. Here, rotation and scaling operations are applied to introduce the transformation invariance in the image generating process, which we find a significant improvement on visualization effect. Finally, we show some cases that such method can help us to gain insight into neural networks.



rate research

Read More

Person Re-identification (ReID) is a critical computer vision task which aims to match the same person in images or video sequences. Most current works focus on settings where the resolution of images is kept the same. However, the resolution is a crucial factor in person ReID, especially when the cameras are at different distances from the person or the cameras models are different from each other. In this paper, we propose a novel two-stream network with a lightweight resolution association ReID feature transformation (RAFT) module and a self-weighted attention (SWA) ReID module to evaluate features under different resolutions. RAFT transforms the low resolution features to corresponding high resolution features. SWA evaluates both features to get weight factors for the person ReID. Both modules are jointly trained to get a resolution-invariant representation. Extensive experiments on five benchmark datasets show the effectiveness of our method. For instance, we achieve Rank-1 accuracy of 43.3% and 83.2% on CAVIAR and MLR-CUHK03, outperforming the state-of-the-art.
In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.
The digital Michelangelo project was a seminal computer vision project in the early 2000s that pushed the capabilities of acquisition systems and involved multiple people from diverse fields, many of whom are now leaders in industry and academia. Reviewing this project with modern eyes provides us with the opportunity to reflect on several issues, relevant now as then to the field of computer vision and research in general, that go beyond the technical aspects of the work. This article was written in the context of a reading group competition at the week-long International Computer Vision Summer School 2017 (ICVSS) on Sicily, Italy. To deepen the participants understanding of computer vision and to foster a sense of community, various reading groups were tasked to highlight important lessons which may be learned from provided literature, going beyond the contents of the paper. This report is the winning entry of this guided discourse (Fig. 1). The authors closely examined the origins, fruits and most importantly lessons about research in general which may be distilled from the digital Michelangelo project. Discussions leading to this report were held within the group as well as with Hao Li, the group mentor.
133 - Laurent Perrinet 2017
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all concepts across all images, regardless of content; and struggle to relate spatially-distant concepts. In this work, we challenge this paradigm by (a) representing images as semantic visual tokens and (b) running transformers to densely model token relationships. Critically, our Visual Transformer operates in a semantic token space, judiciously attending to different image parts based on context. This is in sharp contrast to pixel-space transformers that require orders-of-magnitude more compute. Using an advanced training recipe, our VTs significantly outperform their convolutional counterparts, raising ResNet accuracy on ImageNet top-1 by 4.6 to 7 points while using fewer FLOPs and parameters. For semantic segmentation on LIP and COCO-stuff, VT-based feature pyramid networks (FPN) achieve 0.35 points higher mIoU while reducing the FPN modules FLOPs by 6.5x.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا