Do you want to publish a course? Click here

HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping

192   0   0.0 ( 0 )
 Added by Xu Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we propose a high fidelity face swapping method, called HifiFace, which can well preserve the face shape of the source face and generate photo-realistic results. Unlike other existing face swapping works that only use face recognition model to keep the identity similarity, we propose 3D shape-aware identity to control the face shape with the geometric supervision from 3DMM and 3D face reconstruction method. Meanwhile, we introduce the Semantic Facial Fusion module to optimize the combination of encoder and decoder features and make adaptive blending, which makes the results more photo-realistic. Extensive experiments on faces in the wild demonstrate that our method can preserve better identity, especially on the face shape, and can generate more photo-realistic results than previous state-of-the-art methods.



rate research

Read More

We propose an efficient framework, called Simple Swap (SimSwap), aiming for generalized and high fidelity face swapping. In contrast to previous approaches that either lack the ability to generalize to arbitrary identity or fail to preserve attributes like facial expression and gaze direction, our framework is capable of transferring the identity of an arbitrary source face into an arbitrary target face while preserving the attributes of the target face. We overcome the above defects in the following two ways. First, we present the ID Injection Module (IIM) which transfers the identity information of the source face into the target face at feature level. By using this module, we extend the architecture of an identity-specific face swapping algorithm to a framework for arbitrary face swapping. Second, we propose the Weak Feature Matching Loss which efficiently helps our framework to preserve the facial attributes in an implicit way. Extensive experiments on wild faces demonstrate that our SimSwap is able to achieve competitive identity performance while preserving attributes better than previous state-of-the-art methods. The code is already available on github: https://github.com/neuralchen/SimSwap.
Embedding 3D morphable basis functions into deep neural networks opens great potential for models with better representation power. However, to faithfully learn those models from an image collection, it requires strong regularization to overcome ambiguities involved in the learning process. This critically prevents us from learning high fidelity face models which are needed to represent face images in high level of details. To address this problem, this paper presents a novel approach to learn additional proxies as means to side-step strong regularizations, as well as, leverages to promote detailed shape/albedo. To ease the learning, we also propose to use a dual-pathway network, a carefully-designed architecture that brings a balance between global and local-based models. By improving the nonlinear 3D morphable model in both learning objective and network architecture, we present a model which is superior in capturing higher level of details than the linear or its precedent nonlinear counterparts. As a result, our model achieves state-of-the-art performance on 3D face reconstruction by solely optimizing latent representations.
The threat of 3D masks to face recognition systems is increasingly serious and has been widely concerned by researchers. To facilitate the study of the algorithms, a large-scale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask) has been collected. Specifically, it consists of a total amount of 54, 600 videos which are recorded from 75 subjects with 225 realistic masks under 7 new kinds of sensors. Based on this dataset and Protocol 3 which evaluates both the discrimination and generalization ability of the algorithm under the open set scenarios, we organized a 3D High-Fidelity Mask Face Presentation Attack Detection Challenge to boost the research of 3D mask-based attack detection. It attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including the introduction of the dataset used, the definition of the protocol, the calculation of the evaluation criteria, and the summary and publication of the competition results. Finally, we focus on introducing and analyzing the top ranking algorithms, the conclusion summary, and the research ideas for mask attack detection provided by this competition.
126 - Aqi Gao , Jiale Cao , Yanwei Pang 2021
Pseudo-LiDAR based 3D object detectors have gained popularity due to their high accuracy. However, these methods need dense depth supervision and suffer from inferior speed. To solve these two issues, a recently introduced RTS3D builds an efficient 4D Feature-Consistency Embedding (FCE) space for the intermediate representation of object without depth supervision. FCE space splits the entire object region into 3D uniform grid latent space for feature sampling point generation, which ignores the importance of different object regions. However, we argue that, compared with the inner region, the outer region plays a more important role for accurate 3D detection. To encode more information from the outer region, we propose a shape prior non-uniform sampling strategy that performs dense sampling in outer region and sparse sampling in inner region. As a result, more points are sampled from the outer region and more useful features are extracted for 3D detection. Further, to enhance the feature discrimination of each sampling point, we propose a high-level semantic enhanced FCE module to exploit more contextual information and suppress noise better. Experiments on the KITTI dataset are performed to show the effectiveness of the proposed method. Compared with the baseline RTS3D, our proposed method has 2.57% improvement on AP3d almost without extra network parameters. Moreover, our proposed method outperforms the state-of-the-art methods without extra supervision at a real-time speed.
Cycle consistency is widely used for face editing. However, we observe that the generator tends to find a tricky way to hide information from the original image to satisfy the constraint of cycle consistency, making it impossible to maintain the rich details (e.g., wrinkles and moles) of non-editing areas. In this work, we propose a simple yet effective method named HifaFace to address the above-mentioned problem from two perspectives. First, we relieve the pressure of the generator to synthesize rich details by directly feeding the high-frequency information of the input image into the end of the generator. Second, we adopt an additional discriminator to encourage the generator to synthesize rich details. Specifically, we apply wavelet transformation to transform the image into multi-frequency domains, among which the high-frequency parts can be used to recover the rich details. We also notice that a fine-grained and wider-range control for the attribute is of great importance for face editing. To achieve this goal, we propose a novel attribute regression loss. Powered by the proposed framework, we achieve high-fidelity and arbitrary face editing, outperforming other state-of-the-art approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا