Do you want to publish a course? Click here

High-Fidelity and Arbitrary Face Editing

84   0   0.0 ( 0 )
 Added by Yue Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cycle consistency is widely used for face editing. However, we observe that the generator tends to find a tricky way to hide information from the original image to satisfy the constraint of cycle consistency, making it impossible to maintain the rich details (e.g., wrinkles and moles) of non-editing areas. In this work, we propose a simple yet effective method named HifaFace to address the above-mentioned problem from two perspectives. First, we relieve the pressure of the generator to synthesize rich details by directly feeding the high-frequency information of the input image into the end of the generator. Second, we adopt an additional discriminator to encourage the generator to synthesize rich details. Specifically, we apply wavelet transformation to transform the image into multi-frequency domains, among which the high-frequency parts can be used to recover the rich details. We also notice that a fine-grained and wider-range control for the attribute is of great importance for face editing. To achieve this goal, we propose a novel attribute regression loss. Powered by the proposed framework, we achieve high-fidelity and arbitrary face editing, outperforming other state-of-the-art approaches.



rate research

Read More

Recent studies have shown remarkable success in face manipulation task with the advance of GANs and VAEs paradigms, but the outputs are sometimes limited to low-resolution and lack of diversity. In this work, we propose Additive Focal Variational Auto-encoder (AF-VAE), a novel approach that can arbitrarily manipulate high-resolution face images using a simple yet effective model and only weak supervision of reconstruction and KL divergence losses. First, a novel additive Gaussian Mixture assumption is introduced with an unsupervised clustering mechanism in the structural latent space, which endows better disentanglement and boosts multi-modal representation with external memory. Second, to improve the perceptual quality of synthesized results, two simple strategies in architecture design are further tailored and discussed on the behavior of Human Visual System (HVS) for the first time, allowing for fine control over the model complexity and sample quality. Human opinion studies and new state-of-the-art Inception Score (IS) / Frechet Inception Distance (FID) demonstrate the superiority of our approach over existing algorithms, advancing both the fidelity and extremity of face manipulation task.
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination). We first formulate GAN inversion as a lossy data compression problem and carefully discuss the Rate-Distortion-Edit trade-off. Due to this trade-off, previous works fail to achieve high-fidelity reconstruction while keeping compelling editing ability with a low bit-rate latent code only. In this work, we propose a distortion consultation approach that employs the distortion map as a reference for reconstruction. In the distortion consultation inversion (DCI), the distortion map is first projected to a high-rate latent map, which then complements the basic low-rate latent code with (lost) details via consultation fusion. To achieve high-fidelity editing, we propose an adaptive distortion alignment (ADA) module with a self-supervised training scheme. Extensive experiments in the face and car domains show a clear improvement in terms of both inversion and editing quality.
Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well.
69 - Chaoyou Fu , Yibo Hu , Xiang Wu 2019
Face manipulation has shown remarkable advances with the flourish of Generative Adversarial Networks. However, due to the difficulties of controlling structures and textures, it is challenging to model poses and expressions simultaneously, especially for the extreme manipulation at high-resolution. In this paper, we propose a novel framework that simplifies face manipulation into two correlated stages: a boundary prediction stage and a disentangled face synthesis stage. The first stage models poses and expressions jointly via boundary images. Specifically, a conditional encoder-decoder network is employed to predict the boundary image of the target face in a semi-supervised way. Pose and expression estimators are introduced to improve the prediction performance. In the second stage, the predicted boundary image and the input face image are encoded into the structure and the texture latent space by two encoder networks, respectively. A proxy network and a feature threshold loss are further imposed to disentangle the latent space. Furthermore, due to the lack of high-resolution face manipulation databases to verify the effectiveness of our method, we collect a new high-quality Multi-View Face (MVF-HQ) database. It contains 120,283 images at 6000x4000 resolution from 479 identities with diverse poses, expressions, and illuminations. MVF-HQ is much larger in scale and much higher in resolution than publicly available high-resolution face manipulation databases. We will release MVF-HQ soon to push forward the advance of face manipulation. Qualitative and quantitative experiments on four databases show that our method dramatically improves the synthesis quality.
192 - Qiyao Deng , Jie Cao , Yunfan Liu 2020
Face portrait editing has achieved great progress in recent years. However, previous methods either 1) operate on pre-defined face attributes, lacking the flexibility of controlling shapes of high-level semantic facial components (e.g., eyes, nose, mouth), or 2) take manually edited mask or sketch as an intermediate representation for observable changes, but such additional input usually requires extra efforts to obtain. To break the limitations (e.g. shape, mask or sketch) of the existing methods, we propose a novel framework termed r-FACE (Reference-guided FAce Component Editing) for diverse and controllable face component editing with geometric changes. Specifically, r-FACE takes an image inpainting model as the backbone, utilizing reference images as conditions for controlling the shape of face components. In order to encourage the framework to concentrate on the target face components, an example-guided attention module is designed to fuse attention features and the target face component features extracted from the reference image. Through extensive experimental validation and comparisons, we verify the effectiveness of the proposed framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا