Do you want to publish a course? Click here

How cosmological merger histories shape the diversity of stellar haloes

200   0   0.0 ( 0 )
 Added by Martin P. Rey
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce and apply a new approach to probe the response of galactic stellar haloes to the interplay between cosmological merger histories and galaxy formation physics. We perform dark-matter-only, zoomed simulations of two Milky Way-mass hosts and make targeted, controlled changes to their cosmological histories using the genetic modification technique. Populating each historys stellar halo with a semi-empirical, particle-tagging approach then enables a controlled study, with all instances converging to the same large-scale structure, dynamical and stellar mass at $z=0$ as their reference. These related merger scenarios alone generate an extended spread in stellar halo mass fractions (1.5 dex) comparable to the observed population. Largest scatter is achieved by growing late ($zleq1$) major mergers that spread out existing stars to create massive, in-situ dominated stellar haloes. Increasing a last major merger at $zsim2$ brings more accreted stars into the inner regions, resulting in smaller scatter in the outskirts which are predominantly built by subsequent minor events. Exploiting the flexibility of our semi-empirical approach, we show that the diversity of stellar halo masses across scenarios is reduced by allowing shallower slopes in the stellar mass--halo mass relation for dwarf galaxies, while it remains conserved when central stars are born with hotter kinematics across cosmic time. The merger-dependent diversity of stellar haloes thus responds distinctly to assumptions in modelling the central and dwarf galaxies respectively, opening exciting prospects to constrain star formation and feedback at different galactic mass-scales with the coming generation of deep, photometric observatories.



rate research

Read More

323 - Kuan Wang 2020
The concentration parameter is a key characteristic of a dark matter halo that conveniently connects the halos present-day structure with its assembly history. Using Dark Sky, a suite of cosmological $N$-body simulations, we investigate how halo concentration evolves with time and emerges from the mass assembly history. We also explore the origin of the scatter in the relation between concentration and assembly history. We show that the evolution of halo concentration has two primary modes: (1) smooth increase due to pseudo-evolution; and (2) intense responses to physical merger events. Merger events induce lasting and substantial changes in halo structures, and we observe a universal response in the concentration parameter. We argue that merger events are a major contributor to the uncertainty in halo concentration at fixed halo mass and formation time. In fact, even haloes that are typically classified as having quiescent formation histories experience multiple minor mergers. These minor mergers drive small deviations from pseudo-evolution, which cause fluctuations in the concentration parameters and result in effectively irreducible scatter in the relation between concentration and assembly history. Hence, caution should be taken when using present-day halo concentration parameter as a proxy for the halo assembly history, especially if the recent merger history is unknown.
146 - Ben Lowing 2014
We present a new technique for creating mock catalogues of the individual stars that make up the accreted component of stellar haloes in cosmological simulations and show how the catalogues can be used to test and interpret observational data. The catalogues are constructed from a combination of methods. A semi-analytic galaxy formation model is used to calculate the star formation history in haloes in an N-body simulation and dark matter particles are tagged with this stellar mass. The tags are converted into individual stars using a stellar population synthesis model to obtain the number density and evolutionary stage of the stars, together with a phase-space sampling method that distributes the stars while ensuring that the phase-space structure of the original N-body simulation is maintained. A set of catalogues based on the $Lambda$CDM Aquarius simulations of Milky Way mass haloes have been created and made publicly available on a website. Two example applications are discussed that demonstrate the power and flexibility of the mock catalogues. We show how the rich stellar substructure that survives in the stellar halo precludes a simple measurement of its density profile and demonstrate explicitly how pencil-beam surveys can return almost any value for the slope of the profile. We also show that localized variations in the abundance of particular types of stars, a signature of differences in the composition of stellar populations, allow streams to be easily identified.
431 - Pavel Kroupa 2020
The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation rate. This is in tension with the evolution of galaxies described by delayed-tau models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation timescale tau approx 6.7 Gyr, much longer than the 3.5-4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form propto (t - t1)^eta for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that eta = 0.18 +- 0.03. This suggested near-constancy of a galaxys SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.
We examine the stellar haloes of the Auriga simulations, a suite of thirty cosmological magneto-hydrodynamical high-resolution simulations of Milky Way-mass galaxies performed with the moving-mesh code AREPO. We study halo global properties and radial profiles out to $sim 150$ kpc for each individual galaxy. The Auriga haloes are diverse in their masses and density profiles; mean metallicity and metallicity gradients; ages; and shapes, reflecting the stochasticity inherent in their accretion and merger histories. A comparison with observations of nearby late-type galaxies shows very good agreement between most observed and simulated halo properties. However, Auriga haloes are typically too massive. We find a connection between population gradients and mass assembly history: galaxies with few significant progenitors have more massive haloes, possess large negative halo metallicity gradients and steeper density profiles. The number of accreted galaxies, either disrupted or under disruption, that contribute 90% of the accreted halo mass ranges from 1 to 14, with a median of 6.5, and their stellar masses span over three orders of magnitude. The observed halo mass--metallicity relation is well reproduced by Auriga and is set by the stellar mass and metallicity of the dominant satellite contributors. This relationship is found not only for the accreted component but also for the total (accreted + in-situ) stellar halo. Our results highlight the potential of observable halo properties to infer the assembly history of galaxies.
As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we examine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $Omega_{rm m}$, $Omega_{Lambda}$, $sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through structure, are in agreement with the concordance cosmology with the current best fit giving $1 - Omega_{rm m} = Omega_{rm Lambda} = 0.84^{+0.16}_{-0.17}$. To obtain a more accurate constraint competitive with recently measured cosmological parameters from Planck and WMAP requires a measured merger accuracy of $delta f_{rm m} sim 0.01$, implying surveys with an accurately measured merger history over 2 - 20 deg$^{2}$, which will be feasible with the next generation of imaging and spectroscopic surveys such as Euclid and LSST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا