Do you want to publish a course? Click here

Constraints on the star formation histories of galaxies in the Local Cosmological Volume

432   0   0.0 ( 0 )
 Added by Pavel Kroupa
 Publication date 2020
  fields Physics
and research's language is English
 Authors Pavel Kroupa




Ask ChatGPT about the research

The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation rate. This is in tension with the evolution of galaxies described by delayed-tau models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation timescale tau approx 6.7 Gyr, much longer than the 3.5-4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form propto (t - t1)^eta for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that eta = 0.18 +- 0.03. This suggested near-constancy of a galaxys SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.



rate research

Read More

We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
137 - Hong-Xin Zhang 2017
Local Group (LG) galaxies have relatively accurate SFHs and metallicity evolution derived from resolved CMD modeling, and thus offer a unique opportunity to explore the efficacy of estimating stellar mass M$_{star}$ of real galaxies based on integrated stellar luminosities. Building on the SFHs and metallicity evolution of 40 LG dwarf galaxies, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-NIR color-$M/L$ (color-log$Upsilon_{star}$($lambda$)) relations and M$_{star}$ estimation of local universe galaxies. We find that: The LG galaxies follow color-log$Upsilon_{star}$($lambda$) relations that fall in between the ones calibrated by previous studies; Optical color-log$Upsilon_{star}$($lambda$) relations at higher metallicities ([M/H]) are generally broader and steeper; The SFH concentration does not significantly affect the color-log$Upsilon_{star}$($lambda$) relations; Light-weighted ages and [M/H] together constrain log$Upsilon_{star}$($lambda$) with uncertainties ranging from $lesssim$ 0.1 dex for the NIR up to 0.2 dex for the optical passbands; Metallicity evolution induces significant uncertainties to the optical but not NIR $Upsilon_{star}$($lambda$) at given light-weighted ages and [M/H]; The $V$ band is the ideal luminance passband for estimating $Upsilon_{star}$($lambda$) from single colors, because the combinations of $Upsilon_{star}$($V$) and optical colors such as $B-V$ and $g-r$ exhibit the weakest systematic dependence on SFHs, [M/H] and dust extinction; Without any prior assumption on SFHs, M$_{star}$ is constrained with biases $lesssim$ 0.3 dex by the optical-to-NIR SED fitting. Optical passbands alone constrain M$_{star}$ with biases $lesssim$ 0.4 dex (or $lesssim$ 0.6 dex) when dust extinction is fixed (or variable) in SED fitting. [abridged]
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
We investigate the star formation histories (SFHs) of massive red spiral galaxies with stellar mass $M_ast>10^{10.5}M_odot$, and make comparisons with blue spirals and red ellipticals of similar masses. We make use of the integral field spectroscopy from the SDSS-IV/DR15 MaNGA sample, and estimate spatially resolved SFHs and stellar population properties of each galaxy by applying a Bayesian spectral fitting code to the MaNGA spectra. We find that both red spirals and red ellipticals have experienced only one major star formation episode at early times, and the result is independent of the adopted SFH model. On average, more than half of their stellar masses were formed $>$10 Gyrs ago, and more than 90% were formed $>6$ Gyrs ago. The two types of galaxies show similarly flat profiles in a variety of stellar population parameters: old stellar ages indicated by $D4000$ (the spectral break at around 4000AA), high stellar metallicities, large Mgb/Fe ratios indicating fast formation, and little stellar dust attenuation. In contrast, although blue spirals also formed their central regions $>$10 Gyrs ago, both their central regions and outer disks continuously form stars over a long timescale. Our results imply that, massive red spirals are likely to share some common processes of formation (and possibly quenching) with massive red ellipticals in the sense that both types were formed at $z > 2$ through a fast formation process.Possible mechanisms for the formation and quenching of massive red spirals are discussed.
Star Formation Histories (SFHs) reveal physical processes that influence how galaxies form their stellar mass. We compare the SFHs of a sample of 36 nearby (D $leq$ 4 Mpc) dwarf galaxies from the ACS Nearby Galaxy Survey Treasury (ANGST), inferred from the Color Magnitude Diagrams (CMDs) of individually resolved stars in these galaxies, with those reconstructed by broad-band Spectral Energy Distribution (SED) fitting using the Dense Basis SED fitting code. When comparing individual SFHs, we introduce metrics for evaluating SFH reconstruction techniques. For both the SED and CMD methods, the median normalized SFH of galaxies in the sample shows a period of quiescence at lookback times of 3-6 Gyr followed by rejuvenated star formation over the past 3 Gyr that remains active until the present day. To determine if these represent special epochs of star formation in the D $leq$ 4 Mpc portion of the Local Volume, we break this ANGST dwarf galaxy sample into subsets based on specific star formation rate and spatial location. Modulo offsets between the methods of about 1 Gyr, all subsets show significant decreases and increases in their median normalized SFHs at the same epochs, and the majority of the individual galaxy SFHs are consistent with these trends. These results motivate further study of potential synchronized star formation quiescence and rejuvenation in the Local Volume as well as development of a hybrid method of SFH reconstruction that combines CMDs and SEDs, which have complementary systematics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا