Do you want to publish a course? Click here

Risk assessment for long and short range airborne transmission of SARS-CoV-2, indoors and outdoors, using carbon dioxide measurements

130   0   0.0 ( 0 )
 Added by Bruno Andreotti
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The quantitative analysis of viral transmission risk in public places such as schools, offices, university lecture halls, hospitals, museums, theaters or shopping malls makes it possible to identify the effective levers for a proactive policy of health security and to evaluate the reduction in transmission thus obtained. The contribution to the epidemic propagation of SARS-CoV-2 in such public spaces can be reduced in the short term to a level compatible with an epidemic decline, i.e. with an overall epidemic reproduction rate below one. Here, we revisit the quantitative assessment of indoor and outdoor transmission risk. We show that the long range aerosol transmission is controlled by the flow rate of fresh air and by the mask filtering quality, and is quantitatively related to the CO2 concentration, regardless the room volume and the number of people. The short range airborne transmission is investigated experimentally using dedicated dispersion experiments performed in two French shopping malls. Exhaled aerosols are dispersed by turbulent draughts in a cone, leading to a concentration inversely proportional to the squared distance and to the flow velocity. We show that the average infection dose, called the viral quantum, can be consistently determined from epidemiological and biological experimental data. Practical implications. The results provide a rational design of sanitary policies to prevent the dominant routes of viral transmission by reinforced ventilation, air purification, mechanical dispersion by fans and incentives for correct wearing of quality masks (surgical mask, possibly covered by a fabric mask, or non-medical FFP2 masks). Combined, such measures significantly reduce the airborne transmission risk of SARS-CoV-2, with a quantitative assessment.



rate research

Read More

The sudden onset of the coronavirus (SARS-CoV-2) pandemic has resulted in tremendous loss of human life and economy in more than 210 countries and territories around the world. While self-protections such as wearing mask, sheltering in place and quarantine polices and strategies are necessary for containing virus transmission, tens of millions people in the U.S. have lost their jobs due to the shutdown of businesses. Therefore, how to reopen the economy safely while the virus is still circulating in population has become a problem of significant concern and importance to elected leaders and business executives. In this study, mathematical modeling is employed to quantify the profit generation and the infection risk simultaneously from the point of view of a business entity. Specifically, an ordinary differential equation model was developed to characterize disease transmission and infection risk. An algebraic equation is proposed to determine the net profit that a business entity can generate after reopening and take into account the costs associated of several protection/quarantine guidelines. All model parameters were calibrated based on various data and information sources. Sensitivity analyses and case studies were performed to illustrate the use of the model in practice.
Accurately estimating the effectiveness of stay-at-home orders (SHOs) on reducing social contact and disease spread is crucial for mitigating pandemics. Leveraging individual-level location data for 10 million smartphones, we observe that by April 30th---when nine in ten Americans were under a SHO---daily movement had fallen 70% from pre-COVID levels. One-quarter of this decline is causally attributable to SHOs, with wide demographic differences in compliance, most notably by political affiliation. Likely Trump voters reduce movement by 9% following a local SHO, compared to a 21% reduction among their Clinton-voting neighbors, who face similar exposure risks and identical government orders. Linking social distancing behavior with an epidemic model, we estimate that reductions in movement have causally reduced SARS-CoV-2 transmission rates by 49%.
382 - Changchuan Yin 2020
The emerging global infectious COVID-19 coronavirus disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. For understanding the evolution and transmission of SARS-CoV-2, genotyping of virus isolates is of great importance. We present an accurate method for effectively genotyping SARS-CoV-2 viruses using complete genomes. The method employs the multiple sequence alignments of the genome isolates with the SARS-CoV-2 reference genome. The SNP genotypes are then measured by Jaccard distances to track the relationship of virus isolates. The genotyping analysis of SARS-CoV-2 isolates from the globe reveals that specific multiple mutations are the predominated mutation type during the current epidemic. Our method serves a promising tool for monitoring and tracking the epidemic of pathogenic viruses in their gradual and local genetic variations. The genotyping analysis shows that the genes encoding the S proteins and RNA polymerase, RNA primase, and nucleoprotein, undergo frequent mutations. These mutations are critical for vaccine development in disease control.
While the SARS-CoV-2 keeps spreading world-wide, comparing its evolution across different nations is a timely challenge of both theoretical and practical importance. The large variety of dissimilar and country-dependent epidemiological factors, in fact, makes extremely difficult to understand their influence on the epidemic trends within a unique and coherent framework. We present a geometric framework to characterize, in an integrated and low-dimensional fashion, the epidemic plume-like trajectories traced by the infection rate, $I$, and the fatality rate, $D$, in the $(I,D)$ plane. Our analysis enables the definition of an epidemiometric system based on three geometric observables rating the SARS-CoV-2 pandemic events via scales analogous to those for the magnitude and the intensity of seismic events. Being exquisitely geometric, our framework can be applied to classify other epidemic data and secondary waves, raising the possibility of designing epidemic alerts or early warning systems to enhance public and governmental responses to a rapidly emerging outbreak.
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hides the fact that transmission is stochastic, is dominated by a small number of individuals, and is driven by super-spreading events (SSEs). The distinct transmission features, such as high stochasticity under low prevalence, and the central role played by SSEs on transmission dynamics, should not be overlooked. Many explosive SSEs have occurred in indoor settings stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family gatherings, parties and night clubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity that outbreak can be effectively contained with targeted interventions to eliminate SSEs. Here, we describe the potential types of SSEs, how they influence transmission, and give recommendations for control of SARS-CoV-2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا