Do you want to publish a course? Click here

Wigner transform and quasicrystals

100   0   0.0 ( 0 )
 Added by Antonio Galbis
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Quasicrystals are tempered distributions $mu$ which satisfy symmetric conditions on $mu$ and $widehat mu$. This suggests that techniques from time-frequency analysis could possibly be useful tools in the study of such structures. In this paper we explore this direction considering quasicrystals type conditions on time-frequency representations instead of separately on the distribution and its Fourier transform. More precisely we prove that a tempered distribution $mu$ on ${mathbb R}^d$ whose Wigner transform, $W(mu)$, is supported on a product of two uniformly discrete sets in ${mathbb R}^d$ is a quasicrystal. This result is partially extended to a generalization of the Wigner transform, called matrix-Wigner transform which is defined in terms of the Wigner transform and a linear map $T$ on ${mathbb R}^{2d}$.



rate research

Read More

141 - Andrea Sacchetti 2021
In this paper we review the basic results concerning the Wigner transform and then we completely solve the quantum forced harmonic/inverted oscillator in such a framework; eventually, the tunnel effect for the forced inverted oscillator is discussed.
In this paper, some more properties of the generalized principal pivot transform are derived. Necessary and sufficient conditions for the equality between Moore-Penrose inverse of a generalized principal pivot transform and its complementary generalized principal pivot transform are presented. It has been shown that the generalized principal pivot transform preserves the rank of symmetric part of a given square matrix. These results appear to be more generalized than the existing ones. Inheritance property of $P_{dagger}$-matrix are also characterized for generalized principal pivot transform.
In this paper, we continue our study of the Boltzmann equation by use of tools originating from the analysis of dispersive equations in quantum dynamics. Specifically, we focus on properties of solutions to the Boltzmann equation with collision kernel equal to a constant in the spatial domain $mathbb{R}^d$, $dgeq 2$, which we use as a model in this paper. Local well-posedness for this equation has been proven using the Wigner transform when $left< v right>^beta f_0 in L^2_v H^alpha_x$ for $min (alpha,beta) > frac{d-1}{2}$. We prove that if $alpha,beta$ are large enough, then it is possible to propagate moments in $x$ and derivatives in $v$ (for instance, $left< x right>^k left< abla_v right>^ell f in L^infty_T L^2_{x,v}$ if $f_0$ is nice enough). The mechanism is an exchange of regularity in return for moments of the (inverse) Wigner transform of $f$. We also prove a persistence of regularity result for the scale of Sobolev spaces $H^{alpha,beta}$; and, continuity of the solution map in $H^{alpha,beta}$. Altogether, these results allow us to conclude non-negativity of solutions, conservation of energy, and the $H$-theorem for sufficiently regular solutions constructed via the Wigner transform. Non-negativity in particular is proven to hold in $H^{alpha,beta}$ for any $alpha,beta > frac{d-1}{2}$, without any additional regularity or decay assumptions.
145 - Anatoly N. Kochubei 2020
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse $I^alpha$ that the appropriate change of variables reduces equations with $D^alpha$ (for radial functions) to integral equations whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we begin an operator-theoretic investigation of the operator $I^alpha$, and study a related analog of the Laplace transform.
An analysis of the stability of the spindle transform, introduced in (Three dimensional Compton scattering tomography arXiv:1704.03378 [math.FA]), is presented. We do this via a microlocal approach and show that the normal operator for the spindle transform is a type of paired Lagrangian operator with blowdown--blowdown singularities analogous to that of a limited data synthetic aperture radar (SAR) problem studied by Felea et. al. (Microlocal analysis of SAR imaging of a dynamic reflectivity function SIAM 2013). We find that the normal operator for the spindle transform belongs to a class of distibutions $I^{p,l}(Deltacupwidetilde{Delta},Lambda)$ studied by Felea and Marhuenda (Microlocal analysis of SAR imaging of a dynamic reflectivity function SIAM 2013 and Microlocal analysis of some isospectral deformations Trans. Amer. Math.), where $widetilde{Delta}$ is reflection through the origin, and $Lambda$ is associated to a rotation artefact. Later, we derive a filter to reduce the strength of the image artefact and show that it is of convolution type. We also provide simulated reconstructions to show the artefacts produced by $Lambda$ and show how the filter we derived can be applied to reduce the strength of the artefact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا