Do you want to publish a course? Click here

Optical Mouse: 3D Mouse Pose From Single-View Video

92   0   0.0 ( 0 )
 Added by Bo Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a method to infer the 3D pose of mice, including the limbs and feet, from monocular videos. Many human clinical conditions and their corresponding animal models result in abnormal motion, and accurately measuring 3D motion at scale offers insights into health. The 3D poses improve classification of health-related attributes over 2D representations. The inferred poses are accurate enough to estimate stride length even when the feet are mostly occluded. This method could be applied as part of a continuous monitoring system to non-invasively measure animal health.



rate research

Read More

Automated analysis of mouse behaviours is crucial for many applications in neuroscience. However, quantifying mouse behaviours from videos or images remains a challenging problem, where pose estimation plays an important role in describing mouse behaviours. Although deep learning based methods have made promising advances in human pose estimation, they cannot be directly applied to pose estimation of mice due to different physiological natures. Particularly, since mouse body is highly deformable, it is a challenge to accurately locate different keypoints on the mouse body. In this paper, we propose a novel Hourglass network based model, namely Graphical Model based Structured Context Enhancement Network (GM-SCENet) where two effective modules, i.e., Structured Context Mixer (SCM) and Cascaded Multi-Level Supervision (CMLS) are subsequently implemented. SCM can adaptively learn and enhance the proposed structured context information of each mouse part by a novel graphical model that takes into account the motion difference between body parts. Then, the CMLS module is designed to jointly train the proposed SCM and the Hourglass network by generating multi-level information, increasing the robustness of the whole network.Using the multi-level prediction information from SCM and CMLS, we develop an inference method to ensure the accuracy of the localisation results. Finally, we evaluate our proposed approach against several baselines...
Home-cage social behaviour analysis of mice is an invaluable tool to assess therapeutic efficacy of neurodegenerative diseases. Despite tremendous efforts made within the research community, single-camera video recordings are mainly used for such analysis. Because of the potential to create rich descriptions of mouse social behaviors, the use of multi-view video recordings for rodent observations is increasingly receiving much attention. However, identifying social behaviours from various views is still challenging due to the lack of correspondence across data sources. To address this problem, we here propose a novel multiview latent-attention and dynamic discriminative model that jointly learns view-specific and view-shared sub-structures, where the former captures unique dynamics of each view whilst the latter encodes the interaction between the views. Furthermore, a novel multi-view latent-attention variational autoencoder model is introduced in learning the acquired features, enabling us to learn discriminative features in each view. Experimental results on the standard CRMI13 and our multi-view Parkinsons Disease Mouse Behaviour (PDMB) datasets demonstrate that our model outperforms the other state of the arts technologies and effectively deals with the imbalanced data problem.
The performance of machine learning algorithms used for the segmentation of 3D biomedical images lags behind that of the algorithms employed in the classification of 2D photos. This may be explained by the comparative lack of high-volume, high-quality training datasets, which require state-of-the art imaging facilities, domain experts for annotation and large computational and personal resources to create. The HR-Kidney dataset presented in this work bridges this gap by providing 1.7 TB of artefact-corrected synchrotron radiation-based X-ray phase-contrast microtomography images of whole mouse kidneys and validated segmentations of 33 729 glomeruli, which represents a 1-2 orders of magnitude increase over currently available biomedical datasets. The dataset further contains the underlying raw data, classical segmentations of renal vasculature and uriniferous tubules, as well as true 3D manual annotations. By removing limits currently imposed by small training datasets, the provided data open up the possibility for disruptions in machine learning for biomedical image analysis.
Recovering 3D human pose from 2D joints is still a challenging problem, especially without any 3D annotation, video information, or multi-view information. In this paper, we present an unsupervised GAN-based model consisting of multiple weight-sharing generators to estimate a 3D human pose from a single image without 3D annotations. In our model, we introduce single-view-multi-angle consistency (SVMAC) to significantly improve the estimation performance. With 2D joint locations as input, our model estimates a 3D pose and a camera simultaneously. During training, the estimated 3D pose is rotated by random angles and the estimated camera projects the rotated 3D poses back to 2D. The 2D reprojections will be fed into weight-sharing generators to estimate the corresponding 3D poses and cameras, which are then mixed to impose SVMAC constraints to self-supervise the training process. The experimental results show that our method outperforms the state-of-the-art unsupervised methods by 2.6% on Human 3.6M and 15.0% on MPI-INF-3DHP. Moreover, qualitative results on MPII and LSP show that our method can generalize well to unknown data.
This paper revisits visual saliency prediction by evaluating the recent advancements in this field such as crowd-sourced mouse tracking-based databases and contextual annotations. We pursue a critical and quantitative approach towards some of the new challenges including the quality of mouse tracking versus eye tracking for model training and evaluation. We extend quantitative evaluation of models in order to incorporate contextual information by proposing an evaluation methodology that allows accounting for contextual factors such as text, faces, and object attributes. The proposed contextual evaluation scheme facilitates detailed analysis of models and helps identify their pros and cons. Through several experiments, we find that (1) mouse tracking data has lower inter-participant visual congruency and higher dispersion, compared to the eye tracking data, (2) mouse tracking data does not totally agree with eye tracking in general and in terms of different contextual regions in specific, and (3) mouse tracking data leads to acceptable results in training current existing models, and (4) mouse tracking data is less reliable for model selection and evaluation. The contextual evaluation also reveals that, among the studied models, there is no single model that performs best on all the tested annotations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا