Do you want to publish a course? Click here

The cold circumgalactic medium in emission: MgII halos in TNG50

227   0   0.0 ( 0 )
 Added by Dylan Nelson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We outline theoretical predictions for extended emission from MgII, tracing cool ~10^4 K gas in the circumgalactic medium (CGM) of star-forming galaxies in the high-resolution TNG50 cosmological magnetohydrodynamical simulation. We synthesize surface brightness maps of this strong rest-frame ultraviolet metal emission doublet (2796, 2803), adopting the assumption that the resonant scattering of MgII can be neglected and connecting to recent and upcoming observations with the Keck/KCWI, VLT/MUSE, and BlueMUSE optical integral field unit spectrographs. Studying galaxies with stellar masses 7.5 < log(M*/M_sun) < 11 at redshifts z=0.3, 0.7, 1 and 2 we find that extended MgII halos in emission, similar to their Lyman-alpha counterparts, are ubiquitous across the galaxy population. Median surface brightness profiles exceed 10^-19 erg/s/cm^2/arcsec^2 in the central ~10s of kpc, and total halo MgII luminosity increases with mass for star-forming galaxies, reaching 10^40 erg/s for M* ~ 10^9.5 Msun. MgII halo sizes increase from a few kpc to > 20 kpc at the highest masses, and sizes are larger for halos in denser environments. MgII halos are highly structured, clumpy, and asymmetric, with isophotal axis ratio increasing with galaxy mass. Similarly, the amount and distribution of MgII emission depends on the star formation activity of the central galaxy. Kinematically, inflowing versus outflowing gas dominates the MgII luminosity at high and low galaxy masses, respectively, although the majority of MgII halo emission at z~0.7 traces near-equilibrium fountain flows and gas with non-negligible rotational support, rather than rapidly outflowing galactic winds.



rate research

Read More

We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a significant abundance of small-scale, cold gas structure in the CGM of red and dead elliptical systems, as traced by neutral HI and MgII. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong drho/rho >> 1 gas density perturbations which stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ~10^7 K to radiatively inefficient ~10^4 K clouds, which act as cosmologically long-lived, stimulated cooling seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma beta << 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the ~8x10^4 Msun cell mass of TNG50 enables the ~few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.
103 - Hsiao-Wen Chen 2016
This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.
Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to AGN outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation from hotter phases. We obtain the analytic solution for a steady pressure-driven 1-D cooling flow around cold over-densities, irrespective of their origin. Our solutions describe the slow and steady radiative cooling-driven local gas inflow in the saturated regime of nonlinear thermal instability in clouds, sheets and filaments. We use a simple two-fluid treatment to include magnetic fields as an additional polytropic fluid. To test the limits of applicability of these analytic solutions, we compare with the gas structure found in and around small-scale cold clouds in the CGM of massive halos in the TNG50 cosmological MHD simulation from the IllustrisTNG suite. Despite qualitative resemblance of the gas structure, we find that deviations from steady state, complex geometries and turbulence all add complexity beyond our analytic solutions. We derive an exact relation between the mass cooling rate ($dot{rm M}_{rm cool}$) and the radiative cooling rate ($dot{rm E}_{rm cool}$) for a steady cooling flow. A comparison with the TNG50 clouds shows that this cooling flow relation applies in a narrow temperature range around $rm sim 10^{4.5}$ K where the isobaric cooling time is the shortest. In general, turbulence and mixing, instead of radiative cooling, may dominate the transition of gas between different temperature phases.
We analyze new far-ultraviolet spectra of 13 quasars from the z~0.2 COS-Halos survey that cover the HI Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measurements on the HI column densities NHI. We then apply a Monte-Carlo Markov Chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T~10^4K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining HI surface density with impact parameter Rperp (at >99.5%$ confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70+/-7%; (3) the metallicity distribution function of the cool CGM is unimodal with a median of 1/3 Z_Sun and a 95% interval from ~1/50 Z_Sun to over 3x solar. The incidence of metal poor (<1/100 Z_Sun) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining NHI (at >99.9% confidence) and, therefore, also with increasing Rperp. The high metallicity at large radii implies early enrichment; (5) A non-parametric estimate of the cool CGM gas mass is M_CGM_cool = 9.2 +/- 4.3 10^10 Msun, which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo.
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass halos hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, collisional and streaming losses, with constant parallel diffusivity $kappasim3times10^{29},mathrm{cm^2 s^{-1}}$ chosen to match $gamma$-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass halos at $zlesssim 1-2$. The gas in these CR-dominated halos differs significantly from runs without CRs: the gas is primarily cool (a few $sim10^{4},$K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the low and mid ions in this diffuse cool gas is dominated by photo-ionization, with O VI columns $gtrsim 10^{14.5},mathrm{cm^{-2}}$ at distances $gtrsim 150,mathrm{kpc}$. CR and thermal gas pressure are locally anti-correlated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same halos are primarily warm/hot ($Tgtrsim 10^{5},$K) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا