Do you want to publish a course? Click here

End-to-End Semi-Supervised Object Detection with Soft Teacher

336   0   0.0 ( 0 )
 Added by Zheng Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accurate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1%, 5% and 10%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art.



rate research

Read More

Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model performance, which is of great significance for the application of object detection models. In this paper, we revisit SSOD and propose Instant-Teaching, a completely end-to-end and effective SSOD framework, which uses instant pseudo labeling with extended weak-strong data augmentations for teaching during each training iteration. To alleviate the confirmation bias problem and improve the quality of pseudo annotations, we further propose a co-rectify scheme based on Instant-Teaching, denoted as Instant-Teaching$^*$. Extensive experiments on both MS-COCO and PASCAL VOC datasets substantiate the superiority of our framework. Specifically, our method surpasses state-of-the-art methods by 4.2 mAP on MS-COCO when using $2%$ labeled data. Even with full supervised information of MS-COCO, the proposed method still outperforms state-of-the-art methods by about 1.0 mAP. On PASCAL VOC, we can achieve more than 5 mAP improvement by applying VOC07 as labeled data and VOC12 as unlabeled data.
Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes fully end-to-end training. In this paper, we give the analysis of discarding NMS, where the results reveal that a proper label assignment plays a crucial role. To this end, for fully convolutional detectors, we introduce a Prediction-aware One-To-One (POTO) label assignment for classification to enable end-to-end detection, which obtains comparable performance with NMS. Besides, a simple 3D Max Filtering (3DMF) is proposed to utilize the multi-scale features and improve the discriminability of convolutions in the local region. With these techniques, our end-to-end framework achieves competitive performance against many state-of-the-art detectors with NMS on COCO and CrowdHuman datasets. The code is available at https://github.com/Megvii-BaseDetection/DeFCN .
We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines. Training code and pretrained models are available at https://github.com/facebookresearch/detr.
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires more annotation effort. In this work, we revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD. To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Together with a class-balance loss to downweight overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-the-art methods by significant margins on COCO-standard, COCO-additional, and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP improvements against state-of-the-art method when using 1% of labeled data on MS-COCO, achieves around 10 mAP improvements against the supervised baseline when using only 0.5, 1, 2% of labeled data on MS-COCO.
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location in- formation is explored both explicitly and implicitly. Specifically, we select highly confident object pro- posals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the selected proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا