Do you want to publish a course? Click here

A Gravitationally Lensed Supernova with an Observable Two-Decade Time Delay

70   0   0.0 ( 0 )
 Added by Steven Rodney
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

When the light from a distant object passes very near to a foreground galaxy or cluster, gravitational lensing can cause it to appear as multiple images on the sky. If the source is variable, it can be used to constrain the cosmic expansion rate and dark energy models. Achieving these cosmological goals requires many lensed transients with precise time delay measurements. Lensed supernovae (SN) are attractive for this purpose because they have relatively simple photometric behavior, with well-understood light curve shapes and colours $-$ in contrast to the stochastic variation of quasars. Here we report the discovery of a multiply-imaged supernova, AT2016jka (SN Requiem). It appeared in an evolved galaxy at $z=1.95$, gravitationally lensed by a foreground galaxy cluster. It is likely a Type Ia supernova $-$ the explosion of a low-mass stellar remnant, whose light curve can be used to measure cosmic distances. In archival Hubble Space Telescope imaging, three lensed images of the supernova are detected with relative time delays of $<$200 days. We predict a fourth image will appear close to the cluster core in the year 2037$pm$2. Observation of the fourth image could provide a time delay precision of $approx$7 days, $<1%$ of the extraordinary 20 year baseline. The SN classification and the predicted reappearance time could be improved with further lens modelling and a comprehensive analysis of systematic uncertainties.



rate research

Read More

We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.3 from the center of the foreground galaxy. The observations probe a physical scale of $sim$1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.
We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well-known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the {it Hubble Space Telescope} F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hours reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.
93 - J. Fohlmeister 2006
We present 426 epochs of optical monitoring data spanning 1000 days from December 2003 to June 2006 for the gravitationally lensed quasar SDSS J1004+4112. The time delay between the A and B images is 38.4+/-2.0 days in the expected sense that B leads A and the overall time ordering is C-B-A-D-E. The measured delay invalidates all published models. The models failed because they neglected the perturbations from cluster member galaxies. Models including the galaxies can fit the data well, but strong conclusions about the cluster mass distribution should await the measurement of the longer, and less substructure sensitive, delays of the C and D images. For these images, a CB delay of 681+/-15 days is plausible but requires confirmation, while CB and AD delays of >560 days and > 800 days are required. We clearly detect microlensing of the A/B images, with the delay-corrected flux ratios changing from B-A=0.44+/-0.01 mag in the first season to 0.29+/-0.01 mag in the second season and 0.32+/-0.01 mag in the third season.
180 - T. A. Akhunov 2008
The paper has been withdrawn because double checking and comparison with other data sets after the original submission showed that a broken R-band filter at the Maidanak telescope had affected our quasar monitoring observations in the years 2004 and 2005. They had led to partially spurious measurements, hence our original analysis and conclusions are not reliable.
We present a new method of modelling time-series data based on the running optimal average (ROA). By identifying the effective number of parameters for the ROA model, in terms of the shape and width of its window function and the times and accuracies of the data, we enable a Bayesian analysis, optimising the ROA width, along with other model parameters, by minimising the Bayesian Information Criterion (BIC) and sampling joint posterior parameter distributions using MCMC methods. For analysis of quasar lightcurves, our implementation of ROA modelling can inter-calibrate lightcurve data from different telescopes, estimate the shape and thus the power-density spectrum of the lightcurve, and measure time delays among lightcurves at different wavelengths or from different images of a lensed quasar. Our noise model implements a robust treatment of outliers and error-bar adjustments to account for additional variance or poorly-quantified uncertainties. Tests with simulated data validate the parameter uncertainty estimates. We compare ROA delay measurements with results from cross-correlation and from JAVELIN, which models lightcurves with a prior on the power-density spectrum. We analyse published COSMOGRAIL lightcurves of multi-lensed quasar lightcurves and present the resulting measurements of the inter-image time delays and detection of microlensing effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا