Do you want to publish a course? Click here

OpenSSLNTRU: Faster post-quantum TLS key exchange

102   0   0.0 ( 0 )
 Added by Nicola Tuveri
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Googles CECPQ1 experiment in 2016 integrated a post-quantum key-exchange algorithm, newhope1024, into TLS 1.2. The Google-Cloudflare CECPQ2 experiment in 2019 integrated a more efficient key-exchange algorithm, ntruhrss701, into TLS 1.3. This paper revisits the choices made in CECPQ2, and shows how to achieve higher performance for post-quantum key exchange in TLS 1.3 using a higher-security algorithm, sntrup761. Previous work had indicated that ntruhrss701 key generation was much faster than sntrup761 key generation, but this paper makes sntrup761 key generation much faster by generating a batch of keys at once. Batch key generation is invisible at the TLS protocol layer, but raises software-engineering questions regarding the difficulty of integrating batch key exchange into existing TLS libraries and applications. This paper shows that careful choices of software layers make it easy to integrate fast post-quantum software, including batch key exchange, into TLS with minor changes to TLS libraries and no changes to applications. As a demonstration of feasibility, this paper reports successful integration of its fast sntrup761 library, via a lightly patched OpenSSL, into an unmodified web browser and an unmodified TLS terminator. This paper also reports TLS 1.3 handshake benchmarks, achieving more TLS 1.3 handshakes per second than any software included in OpenSSL.



rate research

Read More

70 - Josip Bozic 2018
Testing of network services represents one of the biggest challenges in cyber security. Because new vulnerabilities are detected on a regular basis, more research is needed. These faults have their roots in the software development cycle or because of intrinsic leaks in the system specification. Conformance testing checks whether a system behaves according to its specification. Here model-based testing provides several methods for automated detection of shortcomings. The formal specification of a system behavior represents the starting point of the testing process. In this paper, a widely used cryptographic protocol is specified and tested for conformance with a test execution framework. The first empirical results are presented and discussed.
On todays Internet, combining the end-to-end security of TLS with Content Delivery Networks (CDNs) while ensuring the authenticity of connections results in a challenging delegation problem. When CDN servers provide content, they have to authenticate themselves as the origin server to establish a valid end-to-end TLS connection with the client. In standard TLS, the latter requires access to the secret key of the server. To curb this problem, multiple workarounds exist to realize a delegation of the authentication. In this paper, we present a solution that renders key sharing unnecessary and reduces the need for workarounds. By adapting identity-based signatures to this setting, our solution offers short-lived delegations. Additionally, by enabling forward-security, existing delegations remain valid even if the servers secret key leaks. We provide an implementation of the scheme and discuss integration into a TLS stack. In our evaluation, we show that an efficient implementation incurs less overhead than a typical network round trip. Thereby, we propose an alternative approach to current delegation practices on the web.
In quantum theory, particles in three spatial dimensions come in two different types: bosons or fermions, which exhibit sharply contrasting behaviours due to their different exchange statistics. Could more general forms of probabilistic theories admit more exotic types of particles? Here, we propose a thought experiment to identify more exotic particles in general post-quantum theories. We consider how in quantum theory the phase introduced by swapping indistinguishable particles can be measured. We generalise this to post-quantum scenarios whilst imposing indistinguishability and locality principles. We show that our ability to witness exotic particle exchange statistics depends on which symmetries are admitted within a theory. These exotic particles can manifest unusual behaviour, such as non-abelianicity even in topologically simple three-dimensional space.
Malware abuses TLS to encrypt its malicious traffic, preventing examination by content signatures and deep packet inspection. Network detection of malicious TLS flows is an important, but challenging, problem. Prior works have proposed supervised machine learning detectors using TLS features. However, by trying to represent all malicious traffic, supervised binary detectors produce models that are too loose, thus introducing errors. Furthermore, they do not distinguish flows generated by different malware. On the other hand, supervised multi-class detectors produce tighter models and can classify flows by malware family, but require family labels, which are not available for many samples. To address these limitations, this work proposes a novel unsupervised approach to detect and cluster malicious TLS flows. Our approach takes as input network traces from sandboxes. It clusters similar TLS flows using 90 features that capture properties of the TLS client, TLS server, certificate, and encrypted payload; and uses the clusters to build an unsupervised detector that can assign a malicious flow to the cluster it belongs to, or determine it is benign. We evaluate our approach using 972K traces from a commercial sandbox and 35M TLS flows from a research network. Our unsupervised detector achieves a F1 score of 0.91, compared to 0.82 for the state-of-the-art supervised detector. The false detection rate of our detector is 0.032% measured over four months of traffic.
Key establishment is a crucial primitive for building secure channels: in a multi-party setting, it allows two parties using only public authenticated communication to establish a secret session key which can be used to encrypt messages. But if the session key is compromised, the confidentiality of encrypted messages is typically compromised as well. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, however, which is most easily achieved using computationally secure digital signature schemes. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution based on traditional classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا