No Arabic abstract
This abstract seeks to introduce the ISSAC community to the DEWCAD project, which is based at Coventry University and the University of Bath, in the United Kingdom. The project seeks to push back the Doubly Exponential Wall of Cylindrical Algebraic Decomposition, through the integration of SAT/SMT technology, the extension of Lazard projection theory, and the development of new algorithms based on CAD technology but without producing CADs themselves. The project also seeks to develop applications of CAD and will focus on applications in the domains of economics and bio-network analysis.
We present a new algorithm for determining the satisfiability of conjunctions of non-linear polynomial constraints over the reals, which can be used as a theory solver for satisfiability modulo theory (SMT) solving for non-linear real arithmetic. The algorithm is a variant of Cylindrical Algebraic Decomposition (CAD) adapted for satisfiability, where solution candidates (sample points) are constructed incrementally, either until a satisfying sample is found or sufficient samples have been sampled to conclude unsatisfiability. The choice of samples is guided by the input constraints and previous conflicts. The key idea behind our new approach is to start with a partial sample; demonstrate that it cannot be extended to a full sample; and from the reasons for that rule out a larger space around the partial sample, which build up incrementally into a cylindrical algebraic covering of the space. There are similarities with the incremental variant of CAD, the NLSAT method of Jovanovic and de Moura, and the NuCAD algorithm of Brown; but we present worked examples and experimental results on a preliminary implementation to demonstrate the differences to these, and the benefits of the new approach.
Let $Ssubset R^n$ be a compact basic semi-algebraic set defined as the real solution set of multivariate polynomial inequalities with rational coefficients. We design an algorithm which takes as input a polynomial system defining $S$ and an integer $pgeq 0$ and returns the $n$-dimensional volume of $S$ at absolute precision $2^{-p}$.Our algorithm relies on the relationship between volumes of semi-algebraic sets and periods of rational integrals. It makes use of algorithms computing the Picard-Fuchs differential equation of appropriate periods, properties of critical points, and high-precision numerical integration of differential equations.The algorithm runs in essentially linear time with respect to~$p$. This improves upon the previous exponential bounds obtained by Monte-Carlo or moment-based methods. Assuming a conjecture of Dimca, the arithmetic cost of the algebraic subroutines for computing Picard-Fuchs equations and critical points is singly exponential in $n$ and polynomial in the maximum degree of the input.
The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp. column) echelon form. We here propose a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We show that this normal form exists and is unique over any ring, provided that the notion of McCoys rank is used, in the presence of zero divisors. We then explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. This enlarges the set of known Elimination variants that compute row or column rank profiles. As a consequence a new Crout base case variant significantly improves the practical efficiency of previously known implementations over a finite field. With matrices of very small rank, we also generalize the techniques of Storjohann and Yang to the computation of the rank profile matrix, achieving an $(r^omega+mn)^{1+o(1)}$ time complexity for an $m times n$ matrix of rank $r$, where $omega$ is the exponent of matrix multiplication. Finally, by give connections to the Bruhat decomposition, and several of its variants and generalizations. Thus, our algorithmic improvements for the PLUQ factorization, and their implementations, directly apply to these decompositions. In particular, we show how a PLUQ decomposition revealing the rank profile matrix also reveals both a row and a column echelon form of the input matrix or of any of its leading sub-matrices, by a simple post-processing made of row and column permutations.
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Warings problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvesters approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with these Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the rank.
Many algorithms for determining properties of real algebraic or semi-algebraic sets rely upon the ability to compute smooth points. Existing methods to compute smooth points on semi-algebraic sets use symbolic quantifier elimination tools. In this paper, we present a simple algorithm based on computing the critical points of some well-chosen function that guarantees the computation of smooth points in each connected compact component of a real (semi)-algebraic set. Our technique is intuitive in principal, performs well on previously difficult examples, and is straightforward to implement using existing numerical algebraic geometry software. The practical efficiency of our approach is demonstrated by solving a conjecture on the number of equilibria of the Kuramoto model for the $n=4$ case. We also apply our method to design an efficient algorithm to compute the real dimension of (semi)-algebraic sets, the original motivation for this research.