Do you want to publish a course? Click here

Infodemics on Youtube: Reliability of Content and Echo Chambers on COVID-19

92   0   0.0 ( 0 )
 Added by Niccol\\`o Di Marco
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Social media radically changed how information is consumed and reported. Moreover, social networks elicited a disintermediated access to an unprecedented amount of content. The world health organization (WHO) coined the term infodemics to identify the information overabundance during an epidemic. Indeed, the spread of inaccurate and misleading information may alter behaviors and complicate crisis management and health responses. This paper addresses information diffusion during the COVID-19 pandemic period with a massive data analysis on YouTube. First, we analyze more than 2M users engagement in 13000 videos released by 68 different YouTube channels, with different political bias and fact-checking indexes. We then investigate the relationship between each users political preference and her/his consumption of questionable/reliable information. Our results, quantified using information theory measures, provide evidence for the existence of echo chambers across two dimensions represented by the political bias and by the trustworthiness of information channels. Finally, we observe that the echo chamber structure cannot be reproduced after properly randomizing the users interaction patterns.



rate research

Read More

In response to the coronavirus disease 2019 (COVID-19) pandemic, governments have encouraged and ordered citizens to practice social distancing, particularly by working and studying at home. Intuitively, only a subset of people have the ability to practice remote work. However, there has been little research on the disparity of mobility adaptation across different income groups in US cities during the pandemic. The authors worked to fill this gap by quantifying the impacts of the pandemic on human mobility by income in Greater Houston, Texas. In this paper, we determined human mobility using pseudonymized, spatially disaggregated cell phone location data. A longitudinal study across estimated income groups was conducted by measuring the total travel distance, radius of gyration, number of visited locations, and per-trip distance in April 2020 compared to the data in a baseline. An apparent disparity in mobility was found across estimated income groups. In particular, there was a strong negative correlation ($rho$ = -0.90) between a travelers estimated income and travel distance in April. Disparities in mobility adaptability were further shown since those in higher income brackets experienced larger percentage drops in the radius of gyration and the number of distinct visited locations than did those in lower income brackets. The findings of this study suggest a need to understand the reasons behind the mobility inflexibility among low-income populations during the pandemic. The study illuminates an equity issue which may be of interest to policy makers and researchers alike in the wake of an epidemic.
The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates collective intelligence, the WWW also allows the rapid dissemination of unsubstantiated conspiracy theories that often elicite rapid, large, but naive social responses such as the recent case of Jade Helm 15 -- where a simple military exercise turned out to be perceived as the beginning of the civil war in the US. We study how Facebook users consume information related to two different kinds of narrative: scientific and conspiracy news. We find that although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, the sizes of the spreading cascades differ. Homogeneity appears to be the primary driver for the diffusion of contents, but each echo chamber has its own cascade dynamics. To mimic these dynamics, we introduce a data-driven percolation model on signed networks.
On social media algorithms for content promotion, accounting for users preferences, might limit the exposure to unsolicited contents. In this work, we study how the same contents (videos) are consumed on different platforms -- i.e. Facebook and YouTube -- over a sample of $12M$ of users. Our findings show that the same content lead to the formation of echo chambers, irrespective of the online social network and thus of the algorithm for content promotion. Finally, we show that the users commenting patterns are accurate early predictors for the formation of echo-chambers.
While social media make it easy to connect with and access information from anyone, they also facilitate basic influence and unfriending mechanisms that may lead to segregated and polarized clusters known as echo chambers. Here we study the conditions in which such echo chambers emerge by introducing a simple model of information sharing in online social networks with the two ingredients of influence and unfriending. Users can change both their opinions and social connections based on the information to which they are exposed through sharing. The model dynamics show that even with minimal amounts of influence and unfriending, the social network rapidly devolves into segregated, homogeneous communities. These predictions are consistent with empirical data from Twitter. Although our findings suggest that echo chambers are somewhat inevitable given the mechanisms at play in online social media, they also provide insights into possible mitigation strategies.
This research was done during the DOMath program at Duke University from May 18 to July 10, 2020. At the time, Duke and other universities across the country were wrestling with the question of how to safely welcome students back to campus in the Fall. Because of this, our project focused on using mathematical models to evaluate strategies to suppress the spread of the virus on campus, specifically in dorms and in classrooms. For dorms, we show that giving students single rooms rather than double rooms can substantially reduce virus spread. For classrooms, we show that moving classes with size above some cutoff online can make the basic reproduction number $R_0<1$, preventing a wide spread epidemic. The cutoff will depend on the contagiousness of the disease in classrooms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا