Do you want to publish a course? Click here

Users Polarization on Facebook and Youtube

69   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

On social media algorithms for content promotion, accounting for users preferences, might limit the exposure to unsolicited contents. In this work, we study how the same contents (videos) are consumed on different platforms -- i.e. Facebook and YouTube -- over a sample of $12M$ of users. Our findings show that the same content lead to the formation of echo chambers, irrespective of the online social network and thus of the algorithm for content promotion. Finally, we show that the users commenting patterns are accurate early predictors for the formation of echo-chambers.



rate research

Read More

Recent studies, targeting Facebook, showed the tendency of users to interact with information adhering to their preferred narrative and to ignore dissenting information. Primarily driven by confirmation bias, users tend to join polarized clusters where they cooperate to reinforce a like-minded system of beliefs, thus facilitating fake news and misinformation cascades. To gain a deeper understanding of these phenomena, in this work we analyze the lexicons used by the communities of users emerging on Facebook around verified and unverified contents. We show how the lexical approach provides important insights about the kind of information processed by the two communities of users and about their overall sentiment. Furthermore, by focusing on comment threads, we observe a strong positive correlation between the lexical convergence of co-commenters and their number of interactions, which in turns suggests that such a trend could be a proxy for the emergence of collective identities and polarization in opinion dynamics.
Vaccine hesitancy has been recognized as a major global health threat. Having access to any type of information in social media has been suggested as a potential powerful influence factor to hesitancy. Recent studies in other fields than vaccination show that access to a wide amount of content through the Internet without intermediaries resolved into major segregation of the users in polarized groups. Users select the information adhering to theirs system of beliefs and tend to ignore dissenting information. In this paper we assess whether there is polarization in Social Media use in the field of vaccination. We perform a thorough quantitative analysis on Facebook analyzing 2.6M users interacting with 298.018 posts over a time span of seven years and 5 months. We used community detection algorithms to automatically detect the emergent communities from the users activity and to quantify the cohesiveness over time of the communities. Our findings show that content consumption about vaccines is dominated by the echo-chamber effect and that polarization increased over years. Communities emerge from the users consumption habits, i.e. the majority of users only consumes information in favor or against vaccines, not both. The existence of echo-chambers may explain why social-media campaigns providing accurate information may have limited reach, may be effective only in sub-groups and might even foment further polarization of opinions. The introduction of dissenting information into a sub-group is disregarded and can have a backfire effect, further reinforcing the existing opinions within the sub-group.
The advent of WWW changed the way we can produce and access information. Recent studies showed that users tend to select information that is consistent with their system of beliefs, forming polarized groups of like-minded people around shared narratives where dissenting information is ignored. In this environment, users cooperate to frame and reinforce their shared narrative making any attempt at debunking inefficient. Such a configuration occurs even in the consumption of news online, and considering that 63% of users access news directly form social media, one hypothesis is that more polarization allows for further spreading of misinformation. Along this path, we focus on the polarization of users around news outlets on Facebook in different European countries (Italy, France, Spain and Germany). First, we compare the pages posting behavior and the users interacting patterns across countries and observe different posting, liking and commenting rates. Second, we explore the tendency of users to interact with different pages (i.e., selective exposure) and the emergence of polarized communities generated around specific pages. Then, we introduce a new metric -- i.e., polarization rank -- to measure polarization of communities for each country. We find that Italy is the most polarized country, followed by France, Germany and lastly Spain. Finally, we present a variation of the Bounded Confidence Model to simulate the emergence of these communities by considering the users engagement and trust on the news. Our findings suggest that trust in information broadcaster plays a pivotal role against polarization of users online.
The social brain hypothesis fixes to 150 the number of social relationships we are able to maintain. Similar cognitive constraints emerge in several aspects of our daily life, from our mobility up to the way we communicate, and might even affect the way we consume information online. Indeed, despite the unprecedented amount of information we can access online, our attention span still remains limited. Furthermore, recent studies showed the tendency of users to ignore dissenting information but to interact with information adhering to their point of view. In this paper, we quantitatively analyze users attention economy in news consumption on social media by analyzing 14M users interacting with 583 news outlets (pages) on Facebook over a time span of 6 years. In particular, we explore how users distribute their activity across news pages and topics. We find that, independently of their activity, users show the tendency to follow a very limited number of pages. On the other hand, users tend to interact with almost all the topics presented by their favored pages. Finally, we introduce a taxonomy accounting for users behavior to distinguish between patterns of selective exposure and interest. Our findings suggest that segregation of users in echo chambers might be an emerging effect of users activity on social media and that selective exposure -- i.e. the tendency of users to consume information interest coherent with their preferences -- could be a major driver in their consumption patterns.
The global public sphere has changed dramatically over the past decades: a significant part of public discourse now takes place on algorithmically driven platforms owned by a handful of private companies. Despite its growing importance, there is scant large-scale academic research on the long-term evolution of user behaviour on these platforms, because the data are often proprietary to the platforms. Here, we evaluate the individual behaviour of 600,000 Twitter users between 2012 and 2019 and find empirical evidence for an acceleration of the way Twitter is used on an individual level. This manifests itself in the fact that cohorts of Twitter users behave differently depending on when they joined the platform. Behaviour within a cohort is relatively consistent over time and characterised by strong internal interactions, but over time behaviour from cohort to cohort shifts towards increased activity. Specifically, we measure this in terms of more tweets per user over time, denser interactions with others via retweets, and shorter content horizons, expressed as an individuals decaying autocorrelation of topics over time. Our observations are explained by a growing proportion of active users who not only tweet more actively but also elicit more retweets. These behaviours suggest a collective contribution to an increased flow of information through each cohorts news feed -- an increase that potentially depletes available collective attention over time. Our findings complement recent, empirical work on social acceleration, which has been largely agnostic about individual user activity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا