No Arabic abstract
Experimental demonstrations of quantum annealing with native implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing with no redundant qubits. As examples of the truth table, NAND and NOR are successfully fabricated as an identical circuit. Similarly, a native implementation of a multiplier comprising six superconducting flux qubits is also demonstrated. These native implementations of Hamiltonians consistent with Boolean logic provide an efficient and scalable way of applying annealing computation to so-called circuit satisfiability problems that aim to find a set of inputs consistent with a given output over any Boolean logic functions, especially those like factorization through a multiplier Hamiltonian. A proof-of-concept demonstration of a hybrid computing architecture for domain-specific quantum computing is described.
We demonstrate that a quantum annealer can be used to solve the NP-complete problem of graph partitioning into subgraphs containing Hamiltonian cycles of constrained length. We present a method to find a partition of a given directed graph into Hamiltonian subgraphs with three or more vertices, called vertex 3-cycle cover. We formulate the problem as a quadratic unconstrained binary optimisation and run it on a D-Wave Advantage quantum annealer. We test our method on synthetic graphs constructed by adding a number of random edges to a set of disjoint cycles. We show that the probability of solution is independent of the cycle length, and a solution is found for graphs up to 4000 vertices and 5200 edges, close to the number of physical working qubits available on the quantum annealer.
We investigate the occurrence of the phenomenon of many-body localization (MBL) on a D-Wave 2000Q programmable quantum annealer. We study a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph, with random exchange interactions and random longitudinal fields. On this system we experimentally observe a transition from an ergodic phase to an MBL phase. We first theoretically show that the MBL transition is induced by a critical disorder strength for individual energy eigenstates in a Chimera cell, which follows from the analysis of the mean half-system block entanglement, as measured by the von Neumann entropy. We show the existence of an area law for the block entanglement over energy eigenstates for the MBL phase, which stands in contrast with an extensive volume scaling in the ergodic phase. The identification of the MBL critical point is performed via the measurement of the maximum variance of the mean block entanglement over the disorder ensemble as a function of the disorder strength. Our results for the energy density phase diagram also show the existence of a many-body mobility edge in the energy spectrum. The time-independent disordered Ising Hamiltonian is then experimentally realized by applying the reverse annealing technique allied with a pause-quench protocol on the D-Wave device. We then characterize the MBL critical point through magnetization measurements at the end of the annealing dynamics, obtaining results compatible with our theoretical predictions for the MBL transition.
The depolarizing quantum operation plays an important role in studying the quantum noise effect and implementing general quantum operations. In this work, we report a scheme which implements a fully controllable input-state independent depolarizing quantum operation for a photonic polarization qubit.
The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a specific quantum simulation task. We infer all parameters of the bosonic Hamiltonian that governs the dynamics of excitations in a two-dimensional grid of nearest-neighbour coupled superconducting qubits. We devise a robust algorithm for identification of Hamiltonian parameters from measured times series of the expectation values of single-mode canonical coordinates. Using super-resolution and denoising methods, we first extract eigenfrequencies of the governing Hamiltonian from the complex time domain measurement; next, we recover the eigenvectors of the Hamiltonian via constrained manifold optimization over the orthogonal group. For five and six coupled qubits, we identify Hamiltonian parameters with sub-MHz precision and construct a spatial implementation error map for a grid of 27 qubits. Our approach enables us to distinguish and quantify the effects of state preparation and measurement errors and show that they are the dominant sources of errors in the implementation. Our results quantify the implementation accuracy of analog dynamics and introduce a diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
So far, unconditional security in key distribution processes has been confined to quantum key distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a completely different approach, the unconditionally secured classical key distribution (USCKD), has been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided by deterministic randomness via path superposition-based reversible unitary transformations in a coupled Mach-Zehnder interferometer. Here, the first experimental demonstration of the USCKD protocol is presented.