No Arabic abstract
The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a specific quantum simulation task. We infer all parameters of the bosonic Hamiltonian that governs the dynamics of excitations in a two-dimensional grid of nearest-neighbour coupled superconducting qubits. We devise a robust algorithm for identification of Hamiltonian parameters from measured times series of the expectation values of single-mode canonical coordinates. Using super-resolution and denoising methods, we first extract eigenfrequencies of the governing Hamiltonian from the complex time domain measurement; next, we recover the eigenvectors of the Hamiltonian via constrained manifold optimization over the orthogonal group. For five and six coupled qubits, we identify Hamiltonian parameters with sub-MHz precision and construct a spatial implementation error map for a grid of 27 qubits. Our approach enables us to distinguish and quantify the effects of state preparation and measurement errors and show that they are the dominant sources of errors in the implementation. Our results quantify the implementation accuracy of analog dynamics and introduce a diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulation of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.
The Bloch oscillation (BO) and Wannier-Stark localization (WSL) are fundamental concepts about metal-insulator transitions in condensed matter physics. These phenomena have also been observed in semiconductor superlattices and simulated in platforms such as photonic waveguide arrays and cold atoms. Here, we report experimental investigation of BOs and WSL simulated with a 5-qubit programmable superconducting processor, of which the effective Hamiltonian is an isotropic $XY$ spin chain. When applying a linear potential to the system by properly tuning all individual qubits, we observe that the propagation of a single spin on the chain is suppressed. It tends to oscillate near the neighborhood of their initial positions, which demonstrates the characteristics of BOs and WSL. We verify that the WSL length is inversely correlated to the potential gradient. Benefiting from the precise single-shot simultaneous readout of all qubits in our experiments, we can also investigate the thermal transport, which requires the joint measurement of more than one qubits. The experimental results show that, as an essential characteristic for BOs and WSL, the thermal transport is also blocked under a linear potential. Our experiment would be scalable to more superconducting qubits for simulating various of out-of-equilibrium problems in quantum many-body systems.
As progress is made towards the first generation of error-corrected quantum computers, careful characterization of a processors noise environment will be crucial to designing tailored, low-overhead error correction protocols. While standard coherence metrics and characterization protocols such as T1 and T2, process tomography, and randomized benchmarking are now ubiquitous, these techniques provide only partial information about the dynamic multi-qubit loss channels responsible for processor errors, which can be described more fully by a Lindblad operator in the master equation formalism. Here, we introduce and experimentally demonstrate Lindblad Tomography, a hardware-agnostic characterization protocol for tomographically reconstructing the Hamiltonian and Lindblad operators of a quantum channel from an ensemble of time-domain measurements. Performing Lindblad Tomography on a small superconducting quantum processor, we show that this technique characterizes and accounts for state-preparation and measurement (SPAM) errors and allows one to place strong bounds on the degree of non-Markovianity in the channels of interest. Comparing the results of single- and two-qubit measurements on a superconducting quantum processor, we demonstrate that Lindblad Tomography can also be used to identify and quantify sources of crosstalk on quantum processors, such as the presence of always-on qubit-qubit interactions.
Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorder. The latter, dubbed many-body localization (MBL) phenomenon, describes the non-ergodic behavior that is dynamically identified by the preservation of local information and slow entanglement growth. Here, we provide a precise observation of this same phenomenology in the case the onsite energy landscape is not disordered, but rather linearly varied, emulating the Stark MBL. To this end, we construct a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model. Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers, signaling the onset of quantum advantage, thus bridging the way for quantum computation as a resource for solving out-of-equilibrium many-body problems.