Do you want to publish a course? Click here

ECKPN: Explicit Class Knowledge Propagation Network for Transductive Few-shot Learning

138   0   0.0 ( 0 )
 Added by Chaofan Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, the transductive graph-based methods have achieved great success in the few-shot classification task. However, most existing methods ignore exploring the class-level knowledge that can be easily learned by humans from just a handful of samples. In this paper, we propose an Explicit Class Knowledge Propagation Network (ECKPN), which is composed of the comparison, squeeze and calibration modules, to address this problem. Specifically, we first employ the comparison module to explore the pairwise sample relations to learn rich sample representations in the instance-level graph. Then, we squeeze the instance-level graph to generate the class-level graph, which can help obtain the class-level visual knowledge and facilitate modeling the relations of different classes. Next, the calibration module is adopted to characterize the relations of the classes explicitly to obtain the more discriminative class-level knowledge representations. Finally, we combine the class-level knowledge with the instance-level sample representations to guide the inference of the query samples. We conduct extensive experiments on four few-shot classification benchmarks, and the experimental results show that the proposed ECKPN significantly outperforms the state-of-the-art methods.



rate research

Read More

302 - Jianyi Li , Guizhong Liu 2021
Metric learning is a widely used method for few shot learning in which the quality of prototypes plays a key role in the algorithm. In this paper we propose the trainable prototypes for distance measure instead of the artificial ones within the meta-training and task-training framework. Also to avoid the disadvantages that the episodic meta-training brought, we adopt non-episodic meta-training based on self-supervised learning. Overall we solve the few-shot tasks in two phases: meta-training a transferable feature extractor via self-supervised learning and training the prototypes for metric classification. In addition, the simple attention mechanism is used in both meta-training and task-training. Our method achieves state-of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification dataset, with about 20% increase compared to the available unsupervised few-shot learning methods.
100 - Zhong Ji , Zhishen Hou , Xiyao Liu 2021
Semantic information provides intra-class consistency and inter-class discriminability beyond visual concepts, which has been employed in Few-Shot Learning (FSL) to achieve further gains. However, semantic information is only available for labeled samples but absent for unlabeled samples, in which the embeddings are rectified unilaterally by guiding the few labeled samples with semantics. Therefore, it is inevitable to bring a cross-modal bias between semantic-guided samples and nonsemantic-guided samples, which results in an information asymmetry problem. To address this problem, we propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples, which builds information symmetry among all samples in both visual and semantic modalities. Specifically, the MAP-Net transfers the neighbor information by the graph propagation to generate the pseudo-semantics for unlabeled samples guided by the completed visual relationships and rectify the feature embeddings. In addition, due to the large discrepancy between visual and semantic modalities, we design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial. Extensive experimental results on three semantic-labeled datasets, i.e., Caltech-UCSD-Birds 200-2011, SUN Attribute Database, and Oxford 102 Flower, have demonstrated that our proposed method achieves promising performance and outperforms the state-of-the-art approaches, which indicates the necessity of information symmetry.
96 - Fei Pan , Chunlei Xu , Jie Guo 2021
Few-shot learning aims to train a classifier that can generalize well when just a small number of labeled samples per class are given. We introduce Transductive Maximum Margin Classifier (TMMC) for few-shot learning. The basic idea of the classical maximum margin classifier is to solve an optimal prediction function that the corresponding separating hyperplane can correctly divide the training data and the resulting classifier has the largest geometric margin. In few-shot learning scenarios, the training samples are scarce, not enough to find a separating hyperplane with good generalization ability on unseen data. TMMC is constructed using a mixture of the labeled support set and the unlabeled query set in a given task. The unlabeled samples in the query set can adjust the separating hyperplane so that the prediction function is optimal on both the labeled and unlabeled samples. Furthermore, we leverage an efficient and effective quasi-Newton algorithm, the L-BFGS method to optimize TMMC. Experimental results on three standard few-shot learning benchmarks including miniImagenet, tieredImagenet and CUB suggest that our TMMC achieves state-of-the-art accuracies.
103 - Vivek Roy , Yan Xu , Yu-Xiong Wang 2020
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models with the few-shot training samples as the seeds. However, due to the limited number of the few-shot seeds, the generated samples usually have small diversity, making it difficult to train a discriminative classifier for the few-shot classes. To enrich the diversity of the generated samples, we propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information. Such intra-class information is obtained with a two-step mechanism. First, a regressor trained only on the many-shot classes is used to evaluate the few-shot class means from only a few samples. Second, superclasses are clustered, and the statistical mean and feature variance of each superclass are used as transferable knowledge inherited by the children few-shot classes. Such knowledge is then used by a generator to augment the sparse training data to help the downstream classification tasks. Extensive experiments show that our method achieves state-of-the-art across different datasets and $n$-shot settings.
Few-shot class incremental learning (FSCIL) portrays the problem of learning new concepts gradually, where only a few examples per concept are available to the learner. Due to the limited number of examples for training, the techniques developed for standard incremental learning cannot be applied verbatim to FSCIL. In this work, we introduce a distillation algorithm to address the problem of FSCIL and propose to make use of semantic information during training. To this end, we make use of word embeddings as semantic information which is cheap to obtain and which facilitate the distillation process. Furthermore, we propose a method based on an attention mechanism on multiple parallel embeddings of visual data to align visual and semantic vectors, which reduces issues related to catastrophic forgetting. Via experiments on MiniImageNet, CUB200, and CIFAR100 dataset, we establish new state-of-the-art results by outperforming existing approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا