Do you want to publish a course? Click here

Dynamical friction from scalar dark matter in the relativistic regime

85   0   0.0 ( 0 )
 Added by Dina Traykova
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Light bosonic scalars (e.g. axions) may form clouds around black holes via superradiant instabilities, or via accretion if they form some component of the dark matter. It has been suggested that their presence may lead to a distinctive dephasing of the gravitational wave signal when a small compact object spirals into a larger black hole. Motivated by this, we study numerically the dynamical friction force on a black hole moving at relativistic velocities in a background scalar field with an asymptotically homogeneous energy density. We show that the relativistic scaling is analogous to that found for supersonic collisional fluids, assuming an approximate expression for the pressure correction which depends on the velocity and scalar mass. While we focus on a complex scalar field, our results confirm the expectation that real scalars would exert a force which oscillates between positive and negative values in time with a frequency set by the scalar mass. The complex field describes the time averaged value of this force, but in a real scalar the rapid force oscillations could in principle leave an imprint on the trajectory. The approximation we obtain can be used to inform estimates of dephasing in the final stages of an extreme mass ratio inspiral.



rate research

Read More

115 - Lam Hui , Daniel Kabat , Xinyu Li 2019
We show that a black hole surrounded by scalar dark matter develops scalar hair. This is the generalization of a phenomenon pointed out by Jacobson, that a minimally coupled scalar with a non-trivial time dependence far away from the black hole would endow the black hole with hair. In our case, the time dependence arises from the oscillation of a scalar field with a non-zero mass. We systematically explore the scalar profile around the black hole for different scalar masses. In the small mass limit, the scalar field has a $1/r$ component at large radius $r$, consistent with Jacobsons result. In the large mass limit (with the Compton wavelength of order of the horizon or smaller), the scalar field has a $1/r^{3/4}$ profile yielding a pile-up close to the horizon, while distinctive nodes occur for intermediate masses. Thus, the dark matter profile around a black hole, while challenging to measure, contains information about the dark matter particle mass. As an application, we consider the case of the supermassive black hole at the center of M87, recently imaged by the Event Horizon Telescope. Its horizon size is roughly the Compton wavelength of a scalar particle of mass $10^{-20}$ eV. We consider the implications of the expected scalar pile-up close to the horizon, for fuzzy dark matter at a mass of $10^{-20}$ eV or below.
We study the phase space dynamics of cosmological models in the theoretical formulations of non-minimal metric-torsion couplings with a scalar field, and investigate in particular the critical points which yield stable solutions exhibiting cosmic acceleration driven by the {em dark energy}. The latter is defined in a way that it effectively has no direct interaction with the cosmological fluid, although in an equivalent scalar-tensor cosmological setup the scalar field interacts with the fluid (which we consider to be the pressureless dust). Determining the conditions for the existence of the stable critical points we check their physical viability, in both Einstein and Jordan frames. We also verify that in either of these frames, the evolution of the universe at the corresponding stable points matches with that given by the respective exact solutions we have found in an earlier work (arXiv: 1611.00654 [gr-qc]). We not only examine the regions of physical relevance for the trajectories in the phase space when the coupling parameter is varied, but also demonstrate the evolution profiles of the cosmological parameters of interest along fiducial trajectories in the effectively non-interacting scenarios, in both Einstein and Jordan frames.
We consider cosmological models with a dynamical dark energy field, and study the presence of three types of commonly found instabilities, namely ghost (when fields have negative kinetic energy), gradient (negative momentum squared) and tachyon (negative mass squared). In particular, we study the linear scalar perturbations of theories with two interacting scalar fields as a proxy for a dark energy and matter fields, and explicitly show how canonical transformations relate these three types of instabilities with each other. We generically show that low-energy ghosts are equivalent to tachyonic instabilities, and that high-energy ghosts are equivalent to gradient instabilities. Via examples we make evident the fact that whenever one of these fields exhibits an instability then the entire physical system becomes unstable, with an unbounded Hamiltonian. Finally, we discuss the role of interactions between the two fields, and show that whereas most of the time interactions will not determine whether an instability is present or not, they may affect the timescale of the instability. We also find exceptional cases in which the two fields are ghosts and hence the physical system is seemingly unstable, but the presence of interactions actually lead to stable solutions. These results are very important for assessing the viability of dark energy models that may exhibit ghost, gradient or tachyonic modes.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from ghost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
For a scalar field $phi$ coupled to cold dark matter (CDM), we provide a general framework for studying the background and perturbation dynamics on the isotropic cosmological background. The dark energy sector is described by a Horndeski Lagrangian with the speed of gravitational waves equivalent to that of light, whereas CDM is dealt as a perfect fluid characterized by the number density $n_c$ and four-velocity $u_c^mu$. For a very general interacting Lagrangian $f(n_c, phi, X, Z)$, where $f$ depends on $n_c$, $phi$, $X=-partial^{mu} phi partial_{mu} phi/2$, and $Z=u_c^{mu} partial_{mu} phi$, we derive the full linear perturbation equations of motion without fixing any gauge conditions. To realize a vanishing CDM sound speed for the successful structure formation, the interacting function needs to be of the form $f=-f_1(phi, X, Z)n_c+f_2(phi, X, Z)$. Employing a quasi-static approximation for the modes deep inside the sound horizon, we obtain analytic formulas for the effective gravitational couplings of CDM and baryon density perturbations as well as gravitational and weak lensing potentials. We apply our general formulas to several interacting theories and show that, in many cases, the CDM gravitational coupling around the quasi de-Sitter background can be smaller than the Newton constant $G$ due to a momentum transfer induced by the $Z$-dependence in $f_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا