Do you want to publish a course? Click here

MICo: Learning improved representations via sampling-based state similarity for Markov decision processes

67   0   0.0 ( 0 )
 Added by Pablo Samuel Castro
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a new behavioural distance over the state space of a Markov decision process, and demonstrate the use of this distance as an effective means of shaping the learnt representations of deep reinforcement learning agents. While existing notions of state similarity are typically difficult to learn at scale due to high computational cost and lack of sample-based algorithms, our newly-proposed distance addresses both of these issues. In addition to providing detailed theoretical analysis, we provide empirical evidence that learning this distance alongside the value function yields structured and informative representations, including strong results on the Arcade Learning Environment benchmark.



rate research

Read More

160 - Pablo Samuel Castro 2019
We present new algorithms for computing and approximating bisimulation metrics in Markov Decision Processes (MDPs). Bisimulation metrics are an elegant formalism that capture behavioral equivalence between states and provide strong theoretical guarantees on differences in optimal behaviour. Unfortunately, their computation is expensive and requires a tabular representation of the states, which has thus far rendered them impractical for large problems. In this paper we present a new version of the metric that is tied to a behavior policy in an MDP, along with an analysis of its theoretical properties. We then present two new algorithms for approximating bisimulation metrics in large, deterministic MDPs. The first does so via sampling and is guaranteed to converge to the true metric. The second is a differentiable loss which allows us to learn an approximation even for continuous state MDPs, which prior to this work had not been possible.
In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.
We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on using the temporal-difference error rather than the conventional error when updating the estimate of the average reward. Our proof techniques are a slight generalization of those by Abounadi, Bertsekas, and Borkar (2001). In experiments with an Access-Control Queuing Task, we show some of the difficulties that can arise when using methods that rely on reference states and argue that our new algorithms can be significantly easier to use.
Automata learning techniques automatically generate system models from test observations. These techniques usually fall into two categories: passive and active. Passive learning uses a predetermined data set, e.g., system logs. In contrast, active learning actively queries the system under learning, which is considered more efficient. An influential active learning technique is Angluins L* algorithm for regular languages which inspired several generalisations from DFAs to other automata-based modelling formalisms. In this work, we study L*-based learning of deterministic Markov decision processes, first assuming an ideal setting with perfect information. Then, we relax this assumption and present a novel learning algorithm that collects information by sampling system traces via testing. Experiments with the implementation of our sampling-based algorithm suggest that it achieves better accuracy than state-of-the-art passive learning techniques with the same amount of test data. Unlike existing learning algorithms with predefined states, our algorithm learns the complete model structure including the states.
Value iteration is a well-known method of solving Markov Decision Processes (MDPs) that is simple to implement and boasts strong theoretical convergence guarantees. However, the computational cost of value iteration quickly becomes infeasible as the size of the state space increases. Various methods have been proposed to overcome this issue for value iteration in large state and action space MDPs, often at the price, however, of generalizability and algorithmic simplicity. In this paper, we propose an intuitive algorithm for solving MDPs that reduces the cost of value iteration updates by dynamically grouping together states with similar cost-to-go values. We also prove that our algorithm converges almost surely to within (2varepsilon / (1 - gamma)) of the true optimal value in the (ell^infty) norm, where (gamma) is the discount factor and aggregated states differ by at most (varepsilon). Numerical experiments on a variety of simulated environments confirm the robustness of our algorithm and its ability to solve MDPs with much cheaper updates especially as the scale of the MDP problem increases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا