No Arabic abstract
Recently, different researchers have found that the gallery composition of a face database can induce performance differentials to facial identification systems in which a probe image is compared against up to all stored reference images to reach a biometric decision. This negative effect is referred to as watchlist imbalance effect. In this work, we present a method to theoretically estimate said effect for a biometric identification system given its verification performance across demographic groups and the composition of the used gallery. Further, we report results for identification experiments on differently composed demographic subsets, i.e. females and males, of the public academic MORPH database using the open-source ArcFace face recognition system. It is shown that the database composition has a huge impact on performance differentials in biometric identification systems, even if performance differentials are less pronounced in the verification scenario. This study represents the first detailed analysis of the watchlist imbalance effect which is expected to be of high interest for future research in the field of facial recognition.
We propose a discrimination-aware learning method to improve both accuracy and fairness of biased face recognition algorithms. The most popular face recognition benchmarks assume a distribution of subjects without paying much attention to their demographic attributes. In this work, we perform a comprehensive discrimination-aware experimentation of deep learning-based face recognition. We also propose a general formulation of algorithmic discrimination with application to face biometrics. The experiments include tree popular face recognition models and three public databases composed of 64,000 identities from different demographic groups characterized by gender and ethnicity. We experimentally show that learning processes based on the most used face databases have led to popular pre-trained deep face models that present a strong algorithmic discrimination. We finally propose a discrimination-aware learning method, Sensitive Loss, based on the popular triplet loss function and a sensitive triplet generator. Our approach works as an add-on to pre-trained networks and is used to improve their performance in terms of average accuracy and fairness. The method shows results comparable to state-of-the-art de-biasing networks and represents a step forward to prevent discriminatory effects by automatic systems.
Recently, concerns regarding potential biases in the underlying algorithms of many automated systems (including biometrics) have been raised. In this context, a biased algorithm produces statistically different outcomes for different groups of individuals based on certain (often protected by anti-discrimination legislation) attributes such as sex and age. While several preliminary studies investigating this matter for facial recognition algorithms do exist, said topic has not yet been addressed for vascular biometric characteristics. Accordingly, in this paper, several popular types of recognition algorithms are benchmarked to ascertain the matter for fingervein recognition. The experimental evaluation suggests lack of bias for the tested algorithms, although future works with larger datasets are needed to validate and confirm those preliminary results.
We address the problem of bias in automated face recognition and demographic attribute estimation algorithms, where errors are lower on certain cohorts belonging to specific demographic groups. We present a novel de-biasing adversarial network (DebFace) that learns to extract disentangled feature representations for both unbiased face recognition and demographics estimation. The proposed network consists of one identity classifier and three demographic classifiers (for gender, age, and race) that are trained to distinguish identity and demographic attributes, respectively. Adversarial learning is adopted to minimize correlation among feature factors so as to abate bias influence from other factors. We also design a new scheme to combine demographics with identity features to strengthen robustness of face representation in different demographic groups. The experimental results show that our approach is able to reduce bias in face recognition as well as demographics estimation while achieving state-of-the-art performance.
Demographic bias is a significant challenge in practical face recognition systems. Existing methods heavily rely on accurate demographic annotations. However, such annotations are usually unavailable in real scenarios. Moreover, these methods are typically designed for a specific demographic group and are not general enough. In this paper, we propose a false positive rate penalty loss, which mitigates face recognition bias by increasing the consistency of instance False Positive Rate (FPR). Specifically, we first define the instance FPR as the ratio between the number of the non-target similarities above a unified threshold and the total number of the non-target similarities. The unified threshold is estimated for a given total FPR. Then, an additional penalty term, which is in proportion to the ratio of instance FPR overall FPR, is introduced into the denominator of the softmax-based loss. The larger the instance FPR, the larger the penalty. By such unequal penalties, the instance FPRs are supposed to be consistent. Compared with the previous debiasing methods, our method requires no demographic annotations. Thus, it can mitigate the bias among demographic groups divided by various attributes, and these attributes are not needed to be previously predefined during training. Extensive experimental results on popular benchmarks demonstrate the superiority of our method over state-of-the-art competitors. Code and trained models are available at https://github.com/Tencent/TFace.
The proliferation of automated facial recognition in various commercial and government sectors has caused significant privacy concerns for individuals. A recent and popular approach to address these privacy concerns is to employ evasion attacks against the metric embedding networks powering facial recognition systems. Face obfuscation systems generate imperceptible perturbations, when added to an image, cause the facial recognition system to misidentify the user. The key to these approaches is the generation of perturbations using a pre-trained metric embedding network followed by their application to an online system, whose model might be proprietary. This dependence of face obfuscation on metric embedding networks, which are known to be unfair in the context of facial recognition, surfaces the question of demographic fairness -- textit{are there demographic disparities in the performance of face obfuscation systems?} To address this question, we perform an analytical and empirical exploration of the performance of recent face obfuscation systems that rely on deep embedding networks. We find that metric embedding networks are demographically aware; they cluster faces in the embedding space based on their demographic attributes. We observe that this effect carries through to the face obfuscation systems: faces belonging to minority groups incur reduced utility compared to those from majority groups. For example, the disparity in average obfuscation success rate on the online Face++ API can reach up to 20 percentage points. Further, for some demographic groups, the average perturbation size increases by up to 17% when choosing a target identity belonging to a different demographic group versus the same demographic group. Finally, we present a simple analytical model to provide insights into these phenomena.