No Arabic abstract
Demanding that charged Nariai black holes in (quasi-)de Sitter space decay without becoming super-extremal implies a lower bound on the masses of charged particles, known as the Festina Lente (FL) bound. In this paper we fix the $mathcal{O}(1)$ constant in the bound and elucidate various aspects of it, as well as extensions to $d>4$ and to situations with scalar potentials and dilatonic couplings. We also discuss phenomenological implications of FL including an explanation of why the Higgs potential cannot have a local minimum at the origin, thus explaining why the weak force must be broken. For constructions of meta-stable dS involving anti-brane uplift scenarios, even though the throat region is consistent with FL, the bound implies that we cannot have any light charged matter fields coming from any far away region in the compactified geometry, contrary to the fact that they are typically expected to arise in these scenarios. This strongly suggests that introduction of warped anti-branes in the throat cannot be decoupled from the bulk dynamics as is commonly assumed. Finally, we provide some evidence that in certain situations the FL bound can have implications even with gravity decoupled and illustrate this in the context of non-compact throats.
I briefly review the theory of Holographic Space-time and its relation to the cosmological constant problem, and the breaking of supersymmetry (SUSY). When combined with some simple phenomenological requirements, these ideas lead to a fairly unique model for Tera-scale physics, which implies direct gauge mediation of SUSY breaking and a model for dark matter as a hidden sector baryon, with nonzero magnetic dipole moment.
We present an overview of the phenomenological implications of the theory of resummed quantum gravity. We discuss its prediction for the cosmological constant in the context of the Planck scale cosmology of Bonanno and Reuter, its relationship to Weinbergs asymptotic safety idea, and its relationship to Weinbergs soft graviton resummation theorem. We also discuss constraints and consistency checks of the theory.
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Kors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the naive field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1)_R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1)_R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b_K, b_{CK}).
In this paper, we first provide a brief review of the effective dynamics of two recently well-studied models of modified loop quantum cosmologies (mLQCs), which arise from different regularizations of the Hamiltonian constraint and show the robustness of a generic resolution of the big bang singularity, replaced by a quantum bounce due to non-perturbative Planck scale effects. As in loop quantum cosmology (LQC), in these modified models the slow-roll inflation happens generically. We consider the cosmological perturbations following the dressed and hybrid approaches and clarify some subtle issues regarding the ambiguity of the extension of the effective potential of the scalar perturbations across the quantum bounce, and the choice of initial conditions. Both of the modified regularizations yield primordial power spectra that are consistent with current observations for the Starobinsky potential within the framework of either the dressed or the hybrid approach. But differences in primordial power spectra are identified among the mLQCs and LQC. In addition, for mLQC-I, striking differences arise between the dressed and hybrid approaches in the infrared and oscillatory regimes. While the differences between the two modified models can be attributed to differences in the Planck scale physics, the permissible choices of the initial conditions and the differences between the two perturbation approaches have been reported for the first time. All these differences, due to either the different regularizations or the different perturbation approaches in principle can be observed in terms of non-Gaussianities.
When Brans-Dicke Theory is formulated in terms of the Jordan scalar field phi, dark energy is related to the mass of this field. We show that if phi is taken to be a complex scalar field then an exact solution of the vacuum equations shows that Friedmann equation possesses a term, proportional to the inverse sixth power of the scale factor, as well as a constant term. Possible interpretations and phenomenological implications of this result are discussed.