No Arabic abstract
Microfabricated ion-trap devices offer a promising pathway towards scalable quantum computing. Research efforts have begun to focus on the engineering challenges associated with developing large-scale ion-trap arrays and networks. However, increasing the size of the array and integrating on-chip electronics can drastically increase the power dissipation within the ion-trap chips. This leads to an increase in the operating temperature of the ion-trap and limits the device performance. Therefore, effective thermal management is an essential consideration for any large-scale architecture. Presented here is the development of a modular cooling system designed for use with multiple ion-trapping experiments simultaneously. The system includes an extensible cryostat that permits scaling of the cooling power to meet the demands of a large network. Following experimental testing on two independent ion-trap experiments, the cooling system is expected to deliver a net cooling power of 111 W at ~70 K to up to four experiments. The cooling system is a step towards meeting the practical challenges of operating large-scale quantum computers with many qubits.
Great advances in precision quantum measurement have been achieved with trapped ions and atomic gases at the lowest possible temperatures. These successes have inspired ideas to merge the two systems. In this way one can study the unique properties of ionic impurities inside a quantum fluid or explore buffer gas cooling of the trapped ion quantum computer. Remarkably, in spite of its importance, experiments with atom-ion mixtures remained firmly confined to the classical collision regime. We report a collision energy of 1.15(0.23) times the $s$-wave energy (or 9.9(2.0)~$mu$K) for a trapped ytterbium ion in an ultracold lithium gas. We observed a deviation from classical Langevin theory by studying the spin-exchange dynamics, indicating quantum behavior in the atom-ion collisions. Our results open up numerous opportunities, such as the exploration of atom-ion Feshbach resonances, in analogy to neutral systems.
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.
We propose a new dark-state cooling method of trapped ion systems in the Lamb-Dicke limit. With application of microwave dressing the ion, we can obtain two electromagnetically induced transparency structures. The heating effects caused by the carrier and the blue sideband transition vanish due to the EIT effects and the final mean phonon numbers can be much less than the recoil limit. Our scheme is robust to fluctuations of microwave power and laser intensities which provides a broad cooling bandwidth to cool motional modes of a linear ion chain. Moreover, it is more suitable to cool four-level ions on a large-scale ion chip.
Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary $U$. We demonstrate that the algorithm functions correctly irrespective of what unitary $U$ the server implements or how the server specifically realizes $U$. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped Yb ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.
We present the design and implementation of a trapped ion cavity QED system. A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm optical cavity. The ion is coherently pumped by near resonant laser light while the cavity output is monitored as a function of pump intensity and cavity detuning. We observe a Purcell enhancement of scattered light into the solid angle subtended by the optical cavity, as well as a three-peak structure arising from strongly driving the atom. This system can be integrated into existing atom{photon quantum network protocols and is a pathway towards an efficient atom{photon quantum interface.