Do you want to publish a course? Click here

Gravitational waves from the vacuum decay with LISA

74   0   0.0 ( 0 )
 Added by Lu Yin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the gravitational wave spectrum resulted from the cosmological first-order phase transition. We compare two models; one is a scalar field model without gravitation, while the other is a scalar field model with gravitation. Based on the sensitivity curves of the LISA space-based interferometer on the stochastic gravitational-wave background, we compare the difference between the gravitational wave spectra of the former and the latter cases resulted from the bubble collision process. Especially, we calculated the speed of the bubble wall before collision for the two models numerically. We show that the difference between the amplitudes of those spectra can clearly distinguish between the two models. We expect that the LISA with Signal to Noise Ratio =10 could observe the spectrum as the fast first-order phase transition.



rate research

Read More

LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of $40^{circ}$ between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji networks standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of $H_0$ could reach $1.3%$. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of $w$ reaches about $4%$, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.
We study a theory of massive tensor gravitons which predicts blue-tilted and largely amplified primordial gravitational waves. After inflation, while their mass is significant until it diminishes to a small value, gravitons are diluted as non-relativistic matter and hence their amplitude can be substantially amplified compared to the massless gravitons which decay as radiation. We show that such gravitational waves can be detected by interferometer experiments, even if their signal is not observed on the CMB scales.
The spectrum of relic gravitational wave (RGW) contains high-frequency divergences, which should be removed. We present a systematic study of the issue, based on the exact RGW solution that covers the five stages, from inflation to the acceleration, each being a power law expansion. We show that the present RGW consists of vacuum dominating at $f>10^{11}$Hz and graviton dominating at $f<10^{11}$Hz, respectively. The gravitons are produced by the four cosmic transitions, mostly by the inflation-reheating one. We perform adiabatic regularization to remove vacuum divergences in three schemes: at present, at the end of inflation, and at horizon-exit, to the 2-nd adiabatic order for the spectrum, and the 4-th order for energy density and pressure. In the first scheme a cutoff is needed to remove graviton divergences. We find that all three schemes yield the spectra of a similar profile, and the primordial spectrum defined far outside horizon during inflation is practically unaffected. We also regularize the gauge-invariant perturbed inflaton and the scalar curvature perturbation by the last two schemes, and find that the scalar spectra, the tensor-to-scalar ratio, and the consistency relation remain unchanged.
The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the first time the modified GW form propagation from the inspiraling of compact binary systems within the context of $f(T)$ gravity in order to obtain new forecasts/constraints on the free parameter of the theory. First, we show that the modified waveform differs from the GR waveform essentially due to induced corrections on the GWs amplitude. Then, we discuss the forecasts on the $f(T)$ gravity assuming simulated sources of GWs as black hole binaries, neutron star binaries and black hole - neutron star binary systems, which emit GWs in the frequency band of the Advanced LIGO (aLIGO) interferometer and of the third generation Einstein Telescope (ET). We show that GWs sources detected within the aLIGO sensitivity can return estimates of the same order of magnitude of the current cosmological observations. On the other hand, detection within the ET sensitivity can improve by up to 2 orders of magnitude the current bound on the $f(T)$ gravity. Therefore, the statistical accuracy that can be achieved by future ground based GW observations, mainly with the ET detector (and planed detectors with a similar sensitivity), can allow strong bounds on the free parameter of the theory, and can be decisive to test the theory of gravitation.
A novel method for extending frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton-magnon detector which measures resonance fluorescence of magnons. Searching for gravitational waves with a wave length $lambda$ by using a ferromagnetic sample with a dimension $l$, the sensitivity of the graviton-magnon detector reaches spectral densities, around $5.4 times 10^{-22} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 14 GHz and $8.6 times 10^{-21} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 8.2 GHz, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا