No Arabic abstract
The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the first time the modified GW form propagation from the inspiraling of compact binary systems within the context of $f(T)$ gravity in order to obtain new forecasts/constraints on the free parameter of the theory. First, we show that the modified waveform differs from the GR waveform essentially due to induced corrections on the GWs amplitude. Then, we discuss the forecasts on the $f(T)$ gravity assuming simulated sources of GWs as black hole binaries, neutron star binaries and black hole - neutron star binary systems, which emit GWs in the frequency band of the Advanced LIGO (aLIGO) interferometer and of the third generation Einstein Telescope (ET). We show that GWs sources detected within the aLIGO sensitivity can return estimates of the same order of magnitude of the current cosmological observations. On the other hand, detection within the ET sensitivity can improve by up to 2 orders of magnitude the current bound on the $f(T)$ gravity. Therefore, the statistical accuracy that can be achieved by future ground based GW observations, mainly with the ET detector (and planed detectors with a similar sensitivity), can allow strong bounds on the free parameter of the theory, and can be decisive to test the theory of gravitation.
$f(Q,T)$ gravity is a novel extension of the symmetric teleparallel gravity where the Lagrangian $L$ is represented through an arbitrary function of the nonmetricity $Q$ and the trace of the energy-momentum tensor $T$ cite{fqt}. In this work, we have constrained a widely used $f(Q,T)$ gravity model of the form $f(Q,T) = Q^{n+1} + m T$ from the primordial abundances of the light elements to understand its viability in Cosmology. We report that the $f(Q,T)$ gravity model can elegantly explain the observed abundances of Helium and Deuterium while the Lithium problem persists. From the constraint on the expansion factor in the range $0.9425 lesssim Z lesssim1.1525$, we report strict constraints on the parameters $m$ and $n$ in the range $-1.13 lesssim n lesssim -1.08$ and $-5.86 lesssim m lesssim12.52$ respectively.
Gravitational waves have only two polarization modes in General Relativity. However, there are six possible modes of polarization in metric theory of gravity in general. The tests of gravitational waves polarization can be tools for pursuing the nature of space-time structure. The observations of gravitational waves with a world-wide network of interferometric detectors such as Advanced LIGO, Advanced Virgo and KAGRA will make it possible to obtain the information of gravitational wave polarization from detector signals. We study the separability of the polarization modes for the inspiral gravitational waves from the compact binary coalescences systematically. Unlike other waveforms such as burst, the binary parameters need to be properly considered. We show that the three polarization modes of the gravitational waves would be separable with the global network of three detectors to some extent, depending on signal-to-noise ratio and the duration of the signal. We also show that with four detectors the three polarization modes would be more easily distinguished by breaking a degeneracy of the polarization modes and even the four polarization modes would be separable.
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.
In this technical note, we study the possibility of using networks of ground-based detectors to directly measure gravitational-wave polarizations using signals from compact binary coalescences. We present a simple data analysis method to partially achieve this, assuming presence of a strong signal well-captured by a GR template.
In this work we shall develop a quantitative approach for extracting predictions on the primordial gravitational waves energy spectrum for $f(R)$ gravity. We shall consider two distinct models which yield different phenomenology, one pure $f(R)$ gravity model and one Chern-Simons corrected potential-less $k$-essence $f(R)$ gravity model in the presence of radiation and non-relativistic perfect matter fluids. The two $f(R)$ gravity models were carefully chosen in order for them to describe in a unified way inflation and the dark energy era, in both cases viable and compatible with the latest Planck data. Also both models mimic the $Lambda$-Cold-Dark-Matter model and specifically the pure $f(R)$ model only at late times, but the Chern-Simons $k$-essence model during the whole evolution of the model up to the radiation domination era. In addition they guarantee a smooth transition from the inflationary era to the radiation, matter domination and subsequently to the dark energy era. Using a WKB approach introduced in the relevant literature by Nishizawa, we derive formulas depending on the redshift that yield the modified gravity effect, quantified by a multiplicative factor, a ``damping in front of the General Relativistic waveform. In order to calculate the effect of the modified gravity, which is the ``damping factor, we solve numerically the Friedmann equations using appropriate initial conditions and by introducing specific statefinder quantities. As we show, the pure $f(R)$ gravity gravitational wave energy spectrum is slightly enhanced, but it remains well below the sensitivity curves of future gravitational waves experiments. In contrast, the Chern-Simons $k$-essence $f(R)$ gravity model gravitational wave energy spectrum is significantly enhanced and two signals are predicted which can be verified by future gravitational wave experiments.