Do you want to publish a course? Click here

The Power of Randomization: Efficient and Effective Algorithms for Constrained Submodular Maximization

114   0   0.0 ( 0 )
 Added by Benwei Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the fundamental problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem achieve the best-known approximation ratio of $k+2sqrt{k+2}+3$ (for a general submodular function) based on deterministic algorithmic frameworks. We propose several randomized algorithms that improve upon the state-of-the-art algorithms in terms of approximation ratio and time complexity, both under the non-adaptive setting and the adaptive setting. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.



rate research

Read More

In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. Our main result is the first $frac{1}{2}$-approximation algorithm for continuous submodular function maximization; this approximation factor of $frac{1}{2}$ is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular functions is also coordinate wise concave along all coordinates, we provide a different $frac{1}{2}$-approximation algorithm that runs in quasilinear time. Both of these results improve upon prior work [Bian et al, 2017, Soma and Yoshida, 2017]. Our first algorithm uses novel ideas such as reducing the guaranteed approximation problem to analyzing a zero-sum game for each coordinate, and incorporates the geometry of this zero-sum game to fix the value at this coordinate. Our second algorithm exploits coordinate-wise concavity to identify a monotone equilibrium condition sufficient for getting the required approximation guarantee, and hunts for the equilibrium point using binary search. We further run experiments to verify the performance of our proposed algorithms in related machine learning applications.
93 - Kai Han , Benwei Wu , Jing Tang 2021
We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains from the advertisers by propagating their ads in the network is maximized. Previous studies on this problem show that it is intractable and present approximation algorithms. We revisit this problem from a fresh perspective and develop novel efficient approximation algorithms, both under the setting where an exact influence oracle is assumed and under one where this assumption is relaxed. Our approximation ratios significantly improve upon the previous ones. Furthermore, we empirically show, using extensive experiments on four datasets, that our algorithms considerably outperform the existing methods on both the solution quality and computation efficiency.
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $frac{alpha}{1+alpha}-varepsilon$, where $alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $frac{1}{2}-varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder and Feldman (Math of OR 2019), that achieves the state-of-the-art offline approximation guarantee of $alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman et al. (NeurIPS 2018). It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(frac{log k + log (1/alpha)}{varepsilon^2})$ per element.
84 - Alina Ene , Huy L. Nguyen 2018
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We develop a new algorithm for a emph{general matroid constraint} with a $1 - 1/e - epsilon$ approximation that achieves a fast running time provided we have a fast data structure for maintaining a maximum weight base in the matroid through a sequence of decrease weight operations. We construct such data structures for graphic matroids and partition matroids, and we obtain the emph{first algorithms} for these classes of matroids that achieve a nearly-optimal, $1 - 1/e - epsilon$ approximation, using a nearly-linear number of function evaluations and arithmetic operations.
We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that for large classes of algorithms that non-trivial sensitivity of $o(k)$ is not possible, even with bounded curvature, and that these results also hold in the distributed framework. However, we also show that in the regime $k = Omega(n)$ that we can obtain $O(1)$ sensitivity for sufficiently low curvature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا