No Arabic abstract
We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein-Gordon models. The multi-kinks are constructed using Lins method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an $m$-structure multi-kink, there will be $m$ eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results.
Nonlinear space-time dynamics, defined in terms of celebrated solitonic equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). Key words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction
We study whether or not sine-Gordon kinks exhibit internal modes or ``quasimodes. By considering the response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor ``quasimodes exist in contrast to previous reports. However, we do identify a different kind of internal mode bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the numerical simulations, thus confirming recent predictions.
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temperature. We find that the kink behavior is very similar to that obtained in the overdamped limit: There is a quadratic dependence on temperature in the diffusion coefficient that comes from the interaction among the kink and phonons, and the average value of the wave function increases with $sqrt{t}$ due to the variance of the centers of individual realizations and not due to kink distortions. These analytical results are fully confirmed by numerical simulations.
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym-Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces.
We present a modified version of the one-dimensional sine-Gordon that exhibits a thermodynamic, roughening phase transition, in analogy with the 2D usual sine-Gordon model. The model is suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrodinger equation for the model, which allows to obtain some analytical insight, and to compute numerically the free energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model, finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition between a low temperature flat phase and a high temperature rough one. The fact that the model is one dimensional and that it has a true phase transition makes it an ideal framework for further studies of roughening phase transitions.