No Arabic abstract
The application of metal nanoparticles as sensitization materials is a common strategy that is used to study dose enhancement in radiotherapy. Recent in vitro tests have revealed that magnetic gold nanoparticles can be used in cancer therapy under a magnetic field to enhance the synergistic efficiency in radiotherapy and photothermal therapy. However, magnetic gold nanoparticles have rarely been studied as sensitization materials. In this study, we obtained further results of the sensitization properties of magnetic gold nanoparticles using the Monte Carlo method TOPAS and TOPAS-nBio. We analyzed the properties of magnetic gold nanoparticles in monoenergetic photons and brachytherapy, and we investigated whether the magnetic field contributes to the sensitization process. Our results demonstrated that the dose enhancement factor of the magnetic gold nanoparticles was 16.7% lower than that of gold nanoparticles in a single particle irradiated by monoenergetic photons. In the cell model, the difference was less than 8.1% in the cytoplasm. We revealed that the magnetic field has no detrimental effect on radiosensitization. Moreover, the sensitization properties of magnetic gold nanoparticles in a clinical brachytherapy source have been revealed for the first time.
Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement ratios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing the DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
Using microemulsion methods, CoO-Pt core-shell nanoparticles (NPs), with diameters of nominally 4 nm, were synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and a suite of x-ray spectroscopies, including diffraction (XRD), absorption (XAS), absorption near-edge structure (XANES), and extended absorption fine structure (EXAFS), which confirmed the existence of CoO cores and pure Pt surface layers. Using a commercial magnetometer, the ac and dc magnetic properties were investigated over a range of temperature (2 K $leq$ T $leq$ 300 K), magnetic field ($leq$ 50 kOe), and frequency ($leq$ 1 kHz). The data indicate the presence of two different magnetic regimes whose onsets are identified by two maxima in the magnetic signals, with a narrow maximum centered at 6 K and a large one centered at 37 K. The magnetic responses in these two regimes exhibit different frequency dependences, where the maximum at high temperature follows a Vogel-Fulcher law, indicating a superparamagnetic (SPM) blocking of interacting nanoparticle moments and the maximum at low temperature possesses a power law response characteristic of a collective freezing of the nanoparticle moments in a superspin glass (SSG) state. This co-existence of blocking and freezing behaviors is consistent with the nanoparticles possessing an antiferromagnetically ordered core, with an uncompensated magnetic moment, and a magnetically disordered interlayer between CoO core and Pt shell.
We present a systematic study of core-shell Au/Fe_3O_4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of <d> = (6.9pm 1.0) nm surrounded by Fe_3O_4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe_3O_4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below T_B = 59 K and a relaxed state well above T_B. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (H_{EX}) started to appear at T~40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe_3O_4 shell) and spins located in the ordered region of the Fe_3O_4 shell.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particles sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.