Do you want to publish a course? Click here

Deep Reinforcement Learning based Group Recommender System

237   0   0.0 ( 0 )
 Added by Zefang Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Group recommender systems are widely used in current web applications. In this paper, we propose a novel group recommender system based on the deep reinforcement learning. We introduce the MovieLens data at first and generate one random group dataset, MovieLens-Rand, from it. This randomly generated dataset is described and analyzed. We also present experimental settings and two state-of-art baselines, AGREE and GroupIM. The framework of our novel model, the Deep Reinforcement learning based Group Recommender system (DRGR), is proposed. Actor-critic networks are implemented with the deep deterministic policy gradient algorithm. The DRGR model is applied on the MovieLens-Rand dataset with two baselines. Compared with baselines, we conclude that DRGR performs better than GroupIM due to long interaction histories but worse than AGREE because of the self-attention mechanism. We express advantages and shortcomings of DRGR and also give future improvement directions at the end.



rate research

Read More

This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We study how validation performance depends on the available amount of training data. We use a combination of top-K accuracy, catalog coverage and novelty for this purpose, since good recommendations for the user is not necessarily captured by a traditional accuracy metric. Second, we ask if we can improve the quality under minimal data by using secondary data sources. We propose knowledge transfer for this purpose and construct a representation to measure similarities between purchase behaviour in data. This to make qualified judgements of which source domain will contribute the most. Our results show that (i) there is a saturation in test performance when training size is increased above a critical point. We also discuss the interplay between different performance metrics, and properties of data. Moreover, we demonstrate that (ii) our representation is meaningful for measuring purchase behaviour. In particular, results show that we can leverage secondary data to improve validation performance if we select a relevant source domain according to our similarly measure.
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms focus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.
125 - Yang Gao , Yi-Fan Li , Yu Lin 2020
Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.
In online advertising, recommender systems try to propose items from a list of products to potential customers according to their interests. Such systems have been increasingly deployed in E-commerce due to the rapid growth of information technology and availability of large datasets. The ever-increasing progress in the field of artificial intelligence has provided powerful tools for dealing with such real-life problems. Deep reinforcement learning (RL) that deploys deep neural networks as universal function approximators can be viewed as a valid approach for design and implementation of recommender systems. This paper provides a comparative study between value-based and policy-based deep RL algorithms for designing recommender systems for online advertising. The RecoGym environment is adopted for training these RL-based recommender systems, where the long short term memory (LSTM) is deployed to build value and policy networks in these two approaches, respectively. LSTM is used to take account of the key role that order plays in the sequence of item observations by users. The designed recommender systems aim at maximising the click-through rate (CTR) for the recommended items. Finally, guidelines are provided for choosing proper RL algorithms for different scenarios that the recommender system is expected to handle.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا