Do you want to publish a course? Click here

A Low-Compexity Deep Learning Framework For Acoustic Scene Classification

98   0   0.0 ( 0 )
 Added by Lam Pham
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we presents a low-complexity deep learning frameworks for acoustic scene classification (ASC). The proposed framework can be separated into three main steps: Front-end spectrogram extraction, back-end classification, and late fusion of predicted probabilities. First, we use Mel filter, Gammatone filter and Constant Q Transfrom (CQT) to transform raw audio signal into spectrograms, where both frequency and temporal features are presented. Three spectrograms are then fed into three individual back-end convolutional neural networks (CNNs), classifying into ten urban scenes. Finally, a late fusion of three predicted probabilities obtained from three CNNs is conducted to achieve the final classification result. To reduce the complexity of our proposed CNN network, we apply two model compression techniques: model restriction and decomposed convolution. Our extensive experiments, which are conducted on DCASE 2021 (IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events) Task 1A development dataset, achieve a low-complexity CNN based framework with 128 KB trainable parameters and the best classification accuracy of 66.7%, improving DCASE baseline by 19.0%



rate research

Read More

165 - Lam Pham 2021
This thesis focuses on dealing with the task of acoustic scene classification (ASC), and then applied the techniques developed for ASC to a real-life application of detecting respiratory disease. To deal with ASC challenges, this thesis addresses three main factors that directly affect the performance of an ASC system. Firstly, this thesis explores input features by making use of multiple spectrograms (log-mel, Gamma, and CQT) for low-level feature extraction to tackle the issue of insufficiently discriminative or descriptive input features. Next, a novel Encoder network architecture is introduced. The Encoder firstly transforms each low-level spectrogram into high-level intermediate features, or embeddings, and thus combines these high-level features to form a very distinct composite feature. The composite or combined feature is then explored in terms of classification performance, with different Decoders such as Random Forest (RF), Multilayer Perception (MLP), and Mixture of Experts (MoE). By using this Encoder-Decoder framework, it helps to reduce the computation cost of the reference process in ASC systems which make use of multiple spectrogram inputs. Since the proposed techniques applied for general ASC tasks were shown to be highly effective, this inspired an application to a specific real-life application. This was namely the 2017 Internal Conference on Biomedical Health Informatics (ICBHI) respiratory sound dataset. Building upon the proposed ASC framework, the ICBHI tasks were tackled with a deep learning framework, and the resulting system shown to be capable at detecting respiratory anomaly cycles and diseases.
In this paper, we present deep learning frameworks for audio-visual scene classification (SC) and indicate how individual visual and audio features as well as their combination affect SC performance. Our extensive experiments, which are conducted on DCASE (IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events) Task 1B development dataset, achieve the best classification accuracy of 82.2%, 91.1%, and 93.9% with audio input only, visual input only, and both audio-visual input, respectively. The highest classification accuracy of 93.9%, obtained from an ensemble of audio-based and visual-based frameworks, shows an improvement of 16.5% compared with DCASE baseline.
Convolutional neural networks (CNNs) with log-mel spectrum features have shown promising results for acoustic scene classification tasks. However, the performance of these CNN based classifiers is still lacking as they do not generalise well for unknown environments. To address this issue, we introduce an acoustic spectrum transformation network where traditional log-mel spectrums are transformed into imagined visual features (IVF). The imagined visual features are learned by exploiting the relationship between audio and visual features present in video recordings. An auto-encoder is used to encode images as visual features and a transformation network learns how to generate imagined visual features from log-mel. Our model is trained on a large dataset of Youtube videos. We test our proposed method on the scene classification task of DCASE and ESC-50, where our method outperforms other spectrum features, especially for unseen environments.
This paper describes an acoustic scene classification method which achieved the 4th ranking result in the IEEE AASP challenge of Detection and Classification of Acoustic Scenes and Events 2016. In order to accomplish the ensuing task, several methods are explored in three aspects: feature extraction, feature transformation, and score fusion for final decision. In the part of feature extraction, several features are investigated for effective acoustic scene classification. For resolving the issue that the same sound can be heard in different places, a feature transformation is applied for better separation for classification. From these, several systems based on different feature sets are devised for classification. The final result is determined by fusing the individual systems. The method is demonstrated and validated by the experiment conducted using the Challenge database.
137 - Seongkyu Mun , Suwon Shon 2018
In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized hierarchical variational autoencoder. Proposed method adapts both the source and target domain to a pre-defined specific domain. Unlike the conventional approach, the relationship between the target and source domain and information of each domain are not required in the adaptation process. Based on the experimental results using the IEEE detection and classification of acoustic scenes and event 2018 task 1-B dataset and the baseline system, it is shown that the proposed approach can mitigate the channel mismatching issue of different recording devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا