We investigate the convergence of the Crouzeix-Raviart finite element method for variational problems with non-autonomous integrands that exhibit non-standard growth conditions. While conforming schemes fail due to the Lavrentiev gap phenomenon, we prove that the solution of the Crouzeix-Raviart scheme converges to a global minimiser. Numerical experiments illustrate the performance of the scheme and give additional analytical insights.
For the non-conforming Crouzeix-Raviart boundary elements from [Heuer, Sayas: Crouzeix-Raviart boundary elements, Numer. Math. 112, 2009], we develop and analyze a posteriori error estimators based on the $h-h/2$ methodology. We discuss the optimal rate of convergence for uniform mesh refinement, and present a numerical experiment with singular data where our adaptive algorithm recovers the optimal rate while uniform mesh refinement is sub-optimal. We also discuss the case of reduced regularity by standard geometric singularities to conjecture that, in this situation, non-uniformly refined meshes are not superior to quasi-uniform meshes for Crouzeix-Raviart boundary elements.
In this paper we propose a penalized Crouzeix-Raviart element method for eigenvalue problems of second order elliptic operators. The key idea is to add a penalty term to tune the local approximation property and the global continuity property of the discrete eigenfunctions. The feature of this method is that by adjusting the penalty parameter, the resulted discrete eigenvalues can be in a state of chaos, and consequently a large portion of them can be reliable and approximate the exact ones with high accuracy. Furthermore, we design an algorithm to select such a quasi-optimal penalty parameter. Finally, we provide numerical tests to demonstrate the performance of the proposed method.
Two asymptotically exact a posteriori error estimates are proposed for eigenvalues by the nonconforming Crouzeix--Raviart and enriched Crouzeix-- Raviart elements. The main challenge in the design of such error estimators comes from the nonconformity of the finite element spaces used. Such nonconformity causes two difficulties, the first one is the construction of high accuracy gradient recovery algorithms, the second one is a computable high accuracy approximation of a consistency error term. The first difficulty was solved for both nonconforming elements in a previous paper. Two methods are proposed to solve the second difficulty in the present paper. In particular, this allows the use of high accuracy gradient recovery techniques. Further, a post-processing algorithm is designed by utilizing asymptotically exact a posteriori error estimators to construct the weights of a combination of two approximate eigenvalues. This algorithm requires to solve only one eigenvalue problem and admits high accuracy eigenvalue approximations both theoretically and numerically.
Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babuv{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.
We discuss the error analysis of the lowest degree Crouzeix-Raviart and Raviart-Thomas finite element methods applied to a two-dimensional Poisson equation. To obtain error estimations, we use the techniques developed by Babuv{s}ka-Aziz and the authors. We present error estimates in terms of the circumradius and the diameter of triangles in which the constants are independent of the geometric properties of the triangulations. Numerical experiments confirm the results obtained.
Anna Kh.Balci
,Christoph Ortner
,Johannes Storn
.
(2021)
.
"Crouzeix-Raviart finite element method for non-autonomous variational problems with Lavrentiev gap"
.
Anna Balci Kh.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا