Do you want to publish a course? Click here

Guiding Teacher Forcing with Seer Forcing for Neural Machine Translation

94   0   0.0 ( 0 )
 Added by Yang Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although teacher forcing has become the main training paradigm for neural machine translation, it usually makes predictions only conditioned on past information, and hence lacks global planning for the future. To address this problem, we introduce another decoder, called seer decoder, into the encoder-decoder framework during training, which involves future information in target predictions. Meanwhile, we force the conventional decoder to simulate the behaviors of the seer decoder via knowledge distillation. In this way, at test the conventional decoder can perform like the seer decoder without the attendance of it. Experiment results on the Chinese-English, English-German and English-Romanian translation tasks show our method can outperform competitive baselines significantly and achieves greater improvements on the bigger data sets. Besides, the experiments also prove knowledge distillation the best way to transfer knowledge from the seer decoder to the conventional decoder compared to adversarial learning and L2 regularization.



rate research

Read More

In this paper, we study the problem of enabling neural machine translation (NMT) to reuse previous translations from similar examples in target prediction. Distinguishing reusable translations from noisy segments and learning to reuse them in NMT are non-trivial. To solve these challenges, we propose an Example-Guided NMT (EGNMT) framework with two models: (1) a noise-masked encoder model that masks out noisy words according to word alignments and encodes the noise-masked sentences with an additional example encoder and (2) an auxiliary decoder model that predicts reusable words via an auxiliary decoder sharing parameters with the primary decoder. We define and implement the two models with the state-of-the-art Transformer. Experiments show that the noise-masked encoder model allows NMT to learn useful information from examples with low fuzzy match scores (FMS) while the auxiliary decoder model is good for high-FMS examples. More experiments on Chinese-English, English-German and English-Spanish translation demonstrate that the combination of the two EGNMT models can achieve improvements of up to +9 BLEU points over the baseline system and +7 BLEU points over a two-encoder Transformer.
177 - Deng Cai , Yan Wang , Huayang Li 2021
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
180 - Kaitao Song , Xu Tan , Jianfeng Lu 2020
Neural machine translation (NMT) generates the next target token given as input the previous ground truth target tokens during training while the previous generated target tokens during inference, which causes discrepancy between training and inference as well as error propagation, and affects the translation accuracy. In this paper, we introduce an error correction mechanism into NMT, which corrects the error information in the previous generated tokens to better predict the next token. Specifically, we introduce two-stream self-attention from XLNet into NMT decoder, where the query stream is used to predict the next token, and meanwhile the content stream is used to correct the error information from the previous predicted tokens. We leverage scheduled sampling to simulate the prediction errors during training. Experiments on three IWSLT translation datasets and two WMT translation datasets demonstrate that our method achieves improvements over Transformer baseline and scheduled sampling. Further experimental analyses also verify the effectiveness of our proposed error correction mechanism to improve the translation quality.
The large-scale data stream problem refers to high-speed information flow which cannot be processed in scalable manner under a traditional computing platform. This problem also imposes expensive labelling cost making the deployment of fully supervised algorithms unfeasible. On the other hand, the problem of semi-supervised large-scale data streams is little explored in the literature because most works are designed in the traditional single-node computing environments while also being fully supervised approaches. This paper offers Weakly Supervised Scalable Teacher Forcing Network (WeScatterNet) to cope with the scarcity of labelled samples and the large-scale data streams simultaneously. WeScatterNet is crafted under distributed computing platform of Apache Spark with a data-free model fusion strategy for model compression after parallel computing stage. It features an open network structure to address the global and local drift problems while integrating a data augmentation, annotation and auto-correction ($DA^3$) method for handling partially labelled data streams. The performance of WeScatterNet is numerically evaluated in the six large-scale data stream problems with only $25%$ label proportions. It shows highly competitive performance even if compared with fully supervised learners with $100%$ label proportions.
In this paper, we propose a novel finetuning algorithm for the recently introduced multi-way, mulitlingual neural machine translate that enables zero-resource machine translation. When used together with novel many-to-one translation strategies, we empirically show that this finetuning algorithm allows the multi-way, multilingual model to translate a zero-resource language pair (1) as well as a single-pair neural translation model trained with up to 1M direct parallel sentences of the same language pair and (2) better than pivot-based translation strategy, while keeping only one additional copy of attention-related parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا