Do you want to publish a course? Click here

Revealing the canalizing structure of Boolean functions: Algorithms and applications

62   0   0.0 ( 0 )
 Added by Brandilyn Stigler
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Boolean functions can be represented in many ways including logical forms, truth tables, and polynomials. Additionally, Boolean functions have different canonical representations such as minimal disjunctive normal forms. Other canonical representation is based on the polynomial representation of Boolean functions where they can be written as a nested product of canalizing layers and a polynomial that contains the noncanalizing variables. In this paper we study the problem of identifying the canalizing layers format of Boolean functions. First, we show that the problem of finding the canalizing layers is NP-hard. Second, we present several algorithms for finding the canalizing layers of a Boolean function, discuss their complexities, and compare their performances. Third, we show applications where the computation of canalizing layers can be used for finding a disjunctive normal form of a nested canalizing function. Another application deals with the reverse engineering of Boolean networks with a prescribed layering format. Finally, implementations of our algorithms in Python and in the computer algebra system Macaulay2 are available at https://github.com/ckadelka/BooleanCanalization.



rate research

Read More

290 - Qijun He , Matthew Macauley 2015
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.
It has been proved that almost all $n$-bit Boolean functions have exact classical query complexity $n$. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all $n$-bit Boolean functions can be computed by an exact quantum algorithm with less than $n$ queries. More exactly, we prove that ${AND}_n$ is the only $n$-bit Boolean function, up to isomorphism, that requires $n$ queries.
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analogue of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analogue is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $binom{n}{k}$ points in the $(k)$-slice (which consists of all $n$-bit strings with exactly $k$ ones). Our random-walk definition and the decomposition has the additional advantage that they extend to the more general setting of posets, which include both high-dimensional expanders and the Grassmann poset, which appears in recent works on the unique games conjecture.
We consider the problem of studying the simulation capabilities of the dynamics of arbitrary networks of finite states machines. In these models, each node of the network takes two states 0 (passive) and 1 (active). The states of the nodes are updated in parallel following a local totalistic rule, i.e., depending only on the sum of active states. Four families of totalistic rules are considered: linear or matrix defined rules (a node takes state 1 if each of its neighbours is in state 1), threshold rules (a node takes state 1 if the sum of its neighbours exceed a threshold), isolated rules (a node takes state 1 if the sum of its neighbours equals to some single number) and interval rule (a node takes state 1 if the sum of its neighbours belong to some discrete interval). We focus in studying the simulation capabilities of the dynamics of each of the latter classes. In particular, we show that totalistic automata networks governed by matrix defined rules can only implement constant functions and other matrix defined functions. In addition, we show that t by threshold rules can generate any monotone Boolean functions. Finally, we show that networks driven by isolated and the interval rules exhibit a very rich spectrum of boolean functions as they can, in fact, implement any arbitrary Boolean functions. We complement this results by studying experimentally the set of different Boolean functions generated by totalistic rules on random graphs.
We connect the study of pseudodeterministic algorithms to two major open problems about the structural complexity of $mathsf{BPTIME}$: proving hierarchy theorems and showing the existence of complete problems. Our main contributions can be summarised as follows. 1. We build on techniques developed to prove hierarchy theorems for probabilistic time with advice (Fortnow and Santhanam, FOCS 2004) to construct the first unconditional pseudorandom generator of polynomial stretch computable in pseudodeterministic polynomial time (with one bit of advice) that is secure infinitely often against polynomial-time computations. As an application of this construction, we obtain new results about the complexity of generating and representing prime numbers. 2. Oliveira and Santhanam (STOC 2017) established unconditionally that there is a pseudodeterministic algorithm for the Circuit Acceptance Probability Problem ($mathsf{CAPP}$) that runs in sub-exponential time and is correct with high probability over any samplable distribution on circuits on infinitely many input lengths. We show that improving this running time or obtaining a result that holds for every large input length would imply new time hierarchy theorems for probabilistic time. In addition, we prove that a worst-case polynomial-time pseudodeterministic algorithm for $mathsf{CAPP}$ would imply that $mathsf{BPP}$ has complete problems. 3. We establish an equivalence between pseudodeterministic construction of strings of large $mathsf{rKt}$ complexity (Oliveira, ICALP 2019) and the existence of strong hierarchy theorems for probabilistic time. More generally, these results suggest new approaches for designing pseudodeterministic algorithms for search problems and for unveiling the structure of probabilistic time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا