Do you want to publish a course? Click here

Online Continual Adaptation with Active Self-Training

190   0   0.0 ( 0 )
 Added by Shiji Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Models trained with offline data often suffer from continual distribution shifts and expensive labeling in changing environments. This calls for a new online learning paradigm where the learner can continually adapt to changing environments with limited labels. In this paper, we propose a new online setting -- Online Active Continual Adaptation, where the learner aims to continually adapt to changing distributions using both unlabeled samples and active queries of limited labels. To this end, we propose Online Self-Adaptive Mirror Descent (OSAMD), which adopts an online teacher-student structure to enable online self-training from unlabeled data, and a margin-based criterion that decides whether to query the labels to track changing distributions. Theoretically, we show that, in the separable case, OSAMD has an $O({T}^{1/2})$ dynamic regret bound under mild assumptions, which is even tighter than the lower bound $Omega(T^{2/3})$ of traditional online learning with full labels. In the general case, we show a regret bound of $O({alpha^*}^{1/3} {T}^{2/3} + alpha^* T)$, where $alpha^*$ denotes the separability of domains and is usually small. Our theoretical results show that OSAMD can fast adapt to changing environments with active queries. Empirically, we demonstrate that OSAMD achieves favorable regrets under changing environments with limited labels on both simulated and real-world data, which corroborates our theoretical findings.



rate research

Read More

Real-world tasks often exhibit a compositional structure that contains a sequence of simpler sub-tasks. For instance, opening a door requires reaching, grasping, rotating, and pulling the door knob. Such compositional tasks require an agent to reason about the sub-task at hand while orchestrating global behavior accordingly. This can be cast as an online task inference problem, where the current task identity, represented by a context variable, is estimated from the agents past experiences with probabilistic inference. Previous approaches have employed simple latent distributions, e.g., Gaussian, to model a single context for the entire task. However, this formulation lacks the expressiveness to capture the composition and transition of the sub-tasks. We propose a variational inference framework OCEAN to perform online task inference for compositional tasks. OCEAN models global and local context variables in a joint latent space, where the global variables represent a mixture of sub-tasks required for the task, while the local variables capture the transitions between the sub-tasks. Our framework supports flexible latent distributions based on prior knowledge of the task structure and can be trained in an unsupervised manner. Experimental results show that OCEAN provides more effective task inference with sequential context adaptation and thus leads to a performance boost on complex, multi-stage tasks.
Data collection and annotation are time-consuming in machine learning, expecially for large scale problem. A common approach for this problem is to transfer knowledge from a related labeled domain to a target one. There are two popular ways to achieve this goal: adversarial learning and self training. In this article, we first analyze the training unstablity problem and the mistaken confusion issue in adversarial learning process. Then, inspired by domain confusion and self-ensembling methods, we propose a combined model to learn feature and class jointly invariant representation, namely Domain Confusion with Self Ensembling (DCSE). The experiments verified that our proposed approach can offer better performance than empirical art in a variety of unsupervised domain adaptation benchmarks.
Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-invariant representations to bridge domain gap. More recently, self-training has been gaining momentum in UDA. Originated from semi-supervised learning, self-training uses unlabeled data efficiently by training on pseudo-labels. However, as corroborated in this work, under distributional shift in UDA, the pseudo-labels can be unreliable in terms of their large discrepancy from the ground truth labels. Thereby, we propose Cycle Self-Training (CST), a principled self-training algorithm that enforces pseudo-labels to generalize across domains. In the forward step, CST generates target pseudo-labels with a source-trained classifier. In the reverse step, CST trains a target classifier using target pseudo-labels, and then updates the shared representations to make the target classifier perform well on the source data. We introduce the Tsallis entropy, a novel regularization to improve the quality of target pseudo-labels. On quadratic neural networks, we prove that CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail. Empirical results indicate that CST significantly improves over prior state-of-the-arts in standard UDA benchmarks across visual recognition and sentiment analysis tasks.
Intelligent agents must pursue their goals in complex environments with partial information and often limited computational capacity. Reinforcement learning methods have achieved great success by creating agents that optimize engineered reward functions, but which often struggle to learn in sparse-reward environments, generally require many environmental interactions to perform well, and are typically computationally very expensive. Active inference is a model-based approach that directs agents to explore uncertain states while adhering to a prior model of their goal behaviour. This paper introduces an active inference agent which minimizes the novel free energy of the expected future. Our model is capable of solving sparse-reward problems with a very high sample efficiency due to its objective function, which encourages directed exploration of uncertain states. Moreover, our model is computationally very light and can operate in a fully online manner while achieving comparable performance to offline RL methods. We showcase the capabilities of our model by solving the mountain car problem, where we demonstrate its superior exploration properties and its robustness to observation noise, which in fact improves performance. We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives and improves performance over previous active inference approaches.
Training a neural network model can be a lifelong learning process and is a computationally intensive one. A severe adverse effect that may occur in deep neural network models is that they can suffer from catastrophic forgetting during retraining on new data. To avoid such disruptions in the continuous learning, one appealing property is the additive nature of ensemble models. In this paper, we propose two generic ensemble approaches, gradient boosting and meta-learning, to solve the catastrophic forgetting problem in tuning pre-trained neural network models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا