Do you want to publish a course? Click here

Accurate Frozen Core Approximation for All-Electron Density-Functional Theory

134   0   0.0 ( 0 )
 Added by Victor Yu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We implement and benchmark the frozen core approximation, a technique commonly adopted in electronic structure theory to reduce the computational cost by means of mathematically fixing the chemically inactive core electron states. The accuracy and efficiency of this approach are well controlled by a single parameter, the number of frozen orbitals. Explicit corrections for the frozen core orbitals and the unfrozen valence orbitals are introduced, safeguarding against seemingly minor numerical deviations from the assumed orthonormality conditions of the basis functions. A speedup of over two-fold can be achieved for the diagonalization step in all-electron density-functional theory simulations containing heavy elements, without any accuracy degradation in terms of the electron density, total energy, and atomic forces. This is demonstrated in a benchmark study covering 103 materials across the periodic table, and a large-scale simulation of CsPbBr3 with 2,560 atoms. Our study provides a rigorous benchmark of the precision of the frozen core approximation (sub-meV per atom for frozen core orbitals below -200 eV) for a wide range of test cases and for chemical elements ranging from Li to Po. The algorithms discussed here are implemented in the open-source Electronic Structure Infrastructure software package.



rate research

Read More

We scrutinize the accuracy of the pseudopotential approximation in density-functional theory (DFT) calculations of surfaces by systematically comparing to results obtained within a full-potential setup. As model system we choose the CO oxidation at a RuO2(110) surface and focus in particular on the adsorbate binding energies and reaction barriers as target quantities for the comparison. Rather surprisingly, the major reason for discrepancy does not result from the neglected semi-core state relaxation in the frozen-core approximation, but from an inadequate description of the local part of the Ru pseudopotential, responsible for the scattering of f like waves. Tiny, seemingly irrelevant, imprecisions appearing in these properties can have a noticeable influence on the surface energetics. At least for the present example, we obtain excellent agreement between both approaches, if the pseudopotential describes these scattering properties accurately.
We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave$+$local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
We introduce a method to carry out zero-temperature calculations within density functional theory (DFT) but without relying on the Born-Oppenheimer (BO) approximation for the ionic motion. Our approach is based on the finite-temperature many-body path-integral formulation of quantum mechanics by taking the zero-temperature limit and treating the imaginary-time propagation of the electronic variables in the context of DFT. This goes beyond the familiar BO approximation and is limited from being an exact treatment of both electrons and ions only by the approximations involved in the DFT component. We test our method in two simple molecules, H$_2$ and benzene. We demonstrate that the method produces a difference from the results of the BO approximation which is significant for many physical systems, especially those containing light atoms such as hydrogen; in these cases, we find that the fluctuations of the distance from its equilibrium position, due to the zero-point-motion, is comparable to the interatomic distances. The method is suitable for use with conventional condensed matter approaches and currently is implemented on top of the periodic pseudopotential code SIESTA.
A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of density is zero. As the gradient increases, the energy is diminished by a gradient suppressing factor, designed to attenuate the energy from its maximum value similar to the shape of a bell curve. Based on this behavior, we constructed a very simple mathematical formula that predicted the correlation energy of atoms and molecules. Combined with our proposed exchange energy functional, we calculated the correlation energies, the total energies, and the ionization energies of test atoms and molecules; and despite the unique simplicities, the functionals accuracies are in the top tier performance, competitive to the B3LYP, BLYP, PBE, TPSS, and M11. Therefore, we propose that, as guided by the simplicities and supported by the accuracies, the correlation energy is the energy that locally tends to drive the system toward the uniform electron gas.
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO$_2$ $alpha$-quartz and stishovite, ZrSiO$_4$ zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for $alpha$-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا