No Arabic abstract
We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave$+$local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
The knowledge of effective masses is a key ingredient to analyze numerous properties of semiconductors, like carrier mobilities, (magneto-)transport properties, or band extrema characteristics yielding carrier densities and density of states. Currently, these masses are usually calculated using finite-difference estimation of density functional theory (DFT) electronic band curvatures. However, finite differences require an additional convergence study and are prone to numerical noise. Moreover, the concept of effective mass breaks down at degenerate band extrema. We assess the former limitation by developing a method that allows to obtain the Hessian of DFT bands directly, using density functional perturbation theory (DFPT). Then, we solve the latter issue by adapting the concept of `transport equivalent effective mass to the $vec{k} cdot hat{vec{p}}$ framework. The numerical noise inherent to finite-difference methods is thus eliminated, along with the associated convergence study. The resulting method is therefore more general, more robust and simpler to use, which makes it especially appropriate for high-throughput computing. After validating the developed techniques, we apply them to the study of silicon, graphane, and arsenic. The formalism is implemented into the ABINIT software and supports the norm-conserving pseudopotential approach, the projector augmented-wave method, and the inclusion of spin-orbit coupling. The derived expressions also apply to the ultrasoft pseudopotential method.
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO$_2$ $alpha$-quartz and stishovite, ZrSiO$_4$ zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for $alpha$-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.
We implement and benchmark the frozen core approximation, a technique commonly adopted in electronic structure theory to reduce the computational cost by means of mathematically fixing the chemically inactive core electron states. The accuracy and efficiency of this approach are well controlled by a single parameter, the number of frozen orbitals. Explicit corrections for the frozen core orbitals and the unfrozen valence orbitals are introduced, safeguarding against seemingly minor numerical deviations from the assumed orthonormality conditions of the basis functions. A speedup of over two-fold can be achieved for the diagonalization step in all-electron density-functional theory simulations containing heavy elements, without any accuracy degradation in terms of the electron density, total energy, and atomic forces. This is demonstrated in a benchmark study covering 103 materials across the periodic table, and a large-scale simulation of CsPbBr3 with 2,560 atoms. Our study provides a rigorous benchmark of the precision of the frozen core approximation (sub-meV per atom for frozen core orbitals below -200 eV) for a wide range of test cases and for chemical elements ranging from Li to Po. The algorithms discussed here are implemented in the open-source Electronic Structure Infrastructure software package.
We present a constrained density functional perturbation theory scheme for the calculation of structural and harmonic vibrational properties of insulators in the presence of an excited and thermalized electron-hole plasma. The method is ideal to tame ultrafast light induced structural transitions in the regime where the photocarriers thermalize faster than the lattice, the electron-hole recombination time is longer than the phonon period and the photocarrier concentration is large enough to be approximated by an electron-hole plasma. The complete derivation presented here includes total energy, forces and stress tensor, variable cell structural optimization, harmonic vibrational properties and the electron-phonon interaction. We discuss in detail the case of zone center optical phonons not conserving the number of electrons and inducing a Fermi shift in the photo-electron and hole distributions. We validate our implementation by comparing with finite differences in Te and VSe2. By calculating the evolution of the phonon spectrum of Te, Si and GaAs as a function of the fluence of the incoming laser light, we demonstrate that even at low fluences, corresponding to approximately 0.1 photocarriers per cell, the phonon spectrum is substantially modified with respect to the ground state one with new Kohn anomalies appearing and a substantial softening of zone center optical phonons. Our implementation can be efficiently used to detect reversible transient phases and irreversible structural transition induced by ultrafast light absorption.